Rapidly mutating DNA regions were mapped using a multi-generational family and advanced sequencing tools.
Understanding how human DNA changes over generations is crucial for estimating genetic disease risks and tracing our evolutionary history. However, some of the most variable regions of our DNA have been difficult for researchers to access, until now.
Scientists from University of Utah Health, the University of Washington, PacBio, and other institutions have used advanced DNA sequencing technologies to create the most detailed map of genetic change across generations. Their study revealed that certain parts of the human genome change far more rapidly than previously believed, opening the door to deeper insights into the origins of human disease and evolution.
"It's mutations that ultimately differentiate us from other species," says author Lynn Jorde, PhD. "We're getting at a very basic property of what makes us human."
The results are published in the journal Nature.
The biological "speed of light"
By comparing the genomes of parents and their children, the team was able to measure how frequently new mutations occur and are passed down. Jorde explains that this mutation rate is as fundamental to human biology as the speed of light is to physics. "This is something you really need to know—the speed at which variation comes into our species," says Jorde, professor of human genetics at the Spencer Fox Eccles School of Medicine at the University of Utah. "All of the genetic variation that we see from individual to individual is a result of these mutations." Over generations, these changes have produced everything from differences in eye color to the ability to digest lactose to rare genetic disorders.

The researchers estimate that every human has nearly 200 new genetic changes that are different from either parent. Many of these changes occur in regions of DNA that are especially difficult to study.
Aaron Quinlan, PhD, professor and chair of human genetics in SFESOM and an author on the study, says that previous efforts to study human genetic change were limited to the parts of the genome that mutate the least. But the new study used advanced sequencing technologies to reveal the most rapidly changing regions of human DNA—regions that Quinlan describes as "previously untouchable."
"We saw parts of our genome that are crazy mutable, almost a mutation every generation," he says. Other segments of DNA were more stable.
Jorde says that the new resource can be an important support for genetic counseling by helping answer the question, "If you have a child who's affected with a disease, is it likely to be inherited from a parent, or is it likely to be a new mutation?" Diseases caused by changes in "mutation hotspots" are more likely to be unique to the child, rather than having been passed down from their parents. This means that the risk of the parents having other kids with the same disease is lower. But if a genetic change was inherited from the parents, those parents' future kids have a higher risk of having the disease.
The platinum pedigree
The researchers' discovery hinged on a Utah family that has worked with genetics researchers since the 1980s as part of the Centre d'Etude du Polymorphisme Humain consortium, proving invaluable for the Human Genome Project.
Four generations of the family have donated DNA and consented to its analysis, which allowed the researchers an extraordinarily in-depth look at how new changes arise and are inherited from parents to children. "A large family with this breadth and depth is an incredibly unique and valuable resource," says Deborah Neklason, PhD, research associate professor of internal medicine in SFESOM and an author on the study. "It helps us understand variation and changes to the genome over generations in incredible detail."
To get a complete, high-resolution picture of genetic variation over time, the team sequenced each person's DNA using multiple different technologies. Some technologies are best for detecting the smallest possible changes to DNA; others can scan enormous swaths of DNA at a time to find big changes and see parts of the genome that are otherwise difficult to sequence. By sequencing the same genomes with multiple technologies, the researchers achieved the best of both worlds: accuracy on both a small and large scale.
In future work, the researchers hope to extend their comprehensive sequencing techniques to more people to see if the genetic rate of change is different for different families. "We saw really interesting stuff in this one family," Quinlan says. The next question is, "How generalizable are those findings across families when trying to predict risk for disease or how genomes evolve?"
The sequencing results will be made freely available so that other researchers can use the data in their own studies, opening the door to further insights into human evolution and genetic disease.
Reference: "Human de novo mutation rates from a four-generation pedigree reference" by David Porubsky, Harriet Dashnow, Thomas A. Sasani, Glennis A. Logsdon, Pille Hallast, Michelle D. Noyes, Zev N. Kronenberg, Tom Mokveld, Nidhi Koundinya, Cillian Nolan, Cody J. Steely, Andrea Guarracino, Egor Dolzhenko, William T. Harvey, William J. Rowell, Kirill Grigorev, Thomas J. Nicholas, Michael E. Goldberg, Keisuke K. Oshima, Jiadong Lin, Peter Ebert, W. Scott Watkins, Tiffany Y. Leung, Vincent C. T. Hanlon, Sean McGee, Brent S. Pedersen, Hannah C. Happ, Hyeonsoo Jeong, Katherine M. Munson, Kendra Hoekzema, Daniel D. Chan, Yanni Wang, Jordan Knuth, Gage H. Garcia, Cairbre Fanslow, Christine Lambert, Charles Lee, Joshua D. Smith, Shawn Levy, Christopher E. Mason, Erik Garrison, Peter M. Lansdorp, Deborah W. Neklason, Lynn B. Jorde, Aaron R. Quinlan, Michael A. Eberle and Evan E. Eichler, 23 April 2025, Nature.
The work was supported by funding from the National Institutes of Health (grant numbers R01HG002385, R01HG010169, U24HG007497, 5K99HG012796-02, R00HG011657, R35GM118335, and GM147352), the Terry Fox Research Foundation (grant number 1074), and the Canadian Institutes of Health Research (grant number 159787).
Researchers report the following conflicts of interest: Evan Eichler is a scientific advisory board (SAB) member of Variant Bio, Inc. Charles Lee is an SAB member of Nabsys and Genome Insight. David Porubsky has previously disclosed a patent application (no. EP19169090) relevant to Strand-seq. Zev Kronenberg, Cillian Nolan, Egor Dolzhenko, Cairbre Fanslow, Christine Lambert, Tom Mokveld, William Rowell, and Michael Eberle are employees and shareholders of PacBio. Zev Kronenberg is a private shareholder in Phase Genomics. The other authors declare no competing interests.

News
New study reveals molecular basis of Long COVID brain fog
Even though many years have passed since the start of the COVID-19 pandemic, the effects of infection with SARS-CoV-2 are not completely understood. This is especially true for Long COVID, a chronic condition that [...]
Scientists make huge Parkinson’s breakthrough as they discover ‘protein trigger’
Scientists have, for the first time, directly visualised the protein clusters in the brain believed to trigger Parkinson's disease, bringing them one step closer to potential treatments. Parkinson's is a progressive incurable neurological disorder [...]
Alpha amino acids’ stability may explain their role as early life’s protein building blocks
A new study from the Hebrew University of Jerusalem published in the Proceedings of the National Academy of Sciences sheds light on one of life's greatest mysteries: why biology is based on a very specific set [...]
3D bioprinting advances enable creation of artificial blood vessels with layered structures
To explore possible treatments for various diseases, either animal models or human cell cultures are usually used first; however, animal models do not always mimic human diseases well, and cultures are far removed [...]
Drinking less water daily spikes your stress hormone
Researchers discovered that people who don’t drink enough water react with sharper cortisol spikes during stressful events, explaining why poor hydration is tied to long-term health risks. A recent study in the Journal of Applied [...]
Nanomed Trials Surge Highlighting Need for Standardization
Researchers have identified over 4,000 nanomedical clinical trials in progress now, highlighting rapid growth in the field and the need for a standardized lexicon to support clinical translation and collaboration. Nanotechnology is the science of [...]
Review: How Could Microalgal Nanoparticles Treat Cancer?
A new approach for cancer treatment involves the use of microalgal-derived nanoparticles. A recent review in Frontiers in Bioengineering and Biotechnology examines their potential as a sustainable and biocompatible solution. Promise and Limitations Nanoparticles (NPs), defined as [...]
COVID-19 models suggest universal vaccination may avert over 100,000 hospitalizations
US Scenario Modeling Hub, a collaborative modeling effort of 17 academic research institutions, reports a universal COVID-19 vaccination recommendation could avert thousands more US hospitalizations and deaths than a high-risk-only strategy. COVID-19 remains a [...]
Climate change fuels spread of neurological virus in Europe
Growing numbers of West Nile virus infection cases, fueled by climate change, are sparking fears among citizens and healthcare providers in Europe. A Clinical Insight in the European Journal of Internal Medicine, published by Elsevier, [...]
Pioneering the next-generation nanoparticle drug delivery system
Researchers report a materials breakthrough enabling a new wave of nanodrug applications, from delivery to diagnostics and gene editing, with global impact. (Nanowerk News) An Australian research team has achieved an advanced materials breakthrough [...]
New Eye Drops Sharpen Aging Eyes in Just One Hour
Imagine tossing aside your reading glasses and regaining crisp, youthful vision with just a few drops a day. New research suggests that specially formulated eye drops can significantly improve near vision in people with [...]
Scientists Use Electricity To “Reprogram” the Immune System for Faster Healing
Researchers from Trinity College Dublin have discovered that electrically stimulating 'macrophages' – one of the immune system's key players – can 'reprogramme' them in such a way to reduce inflammation and encourage faster, more [...]
Long Covid sufferers left to fend for themselves
When Alex Sprackland caught Covid-19 in March 2020, he thought he’d be back to normal in no time. Yet, five years on, the 34-year-old still grapples with the severe, life-limiting effects of the infection. [...]
New Research Reveals Nanoplastics’ Damaging Effect on Brain Cells
Researchers at Trinity Biomedical Sciences Institute (TBSI) have found that nanoplastics, which are even smaller than microplastics, impair energy metabolism in brain cells. The results were reported in the Journal of Hazardous Materials: Plastics. In addition to [...]
New research – eyedrops to lower lifetime risk of nearsightedness complications
For the first time, researchers are leading a national study to see if the onset of nearsightedness can be delayed – and consequently reduced in magnitude over a lifetime – with the use of [...]
Study Shows Brain Signals Only Matter if They Arrive on Time
Signals are processed only if they reach the brain during brief receptive cycles. This timing mechanism explains how attention filters information and may inform therapies and brain-inspired technologies. It has long been recognized that [...]