Compared to their bulk materials, nanomaterials offer a wide range of distinct physicochemical properties that are ideal for many biomedical purposes. Some of the different applications of nanomaterials within medicine include drug delivery, tissue engineering, bio-micromechanical systems (bioMEMS), biosensors, microfluidics, and diagnostics. Of these, nanomaterial-based drug delivery systems have emerged as one of the primary uses of nanotechnology within medicine.
The small size of nanomaterials is mainly responsible for their various advantageous properties. For drug delivery systems, nanomaterials have not only improved the targeting specificity of these drugs but have also improved circulation time, biodistribution, solubility, intracellular delivery, and ability to cross biological membranes. For cancer treatment purposes, nanocarriers have also been found to allow for drugs to accumulate at high levels at the tumor site.
An Overview of Inorganic Nanomaterials
Inorganic nanoparticles (INPs) have been widely studied over the past several decades for a wide variety of industrial purposes. Within the field of biomedicine, INPs have been utilized for both diagnostic and therapeutic purposes.
For example, gold nanoparticles (AuNPs) have been widely studied due to their biocompatibility and the ease of controlling their size distribution and shape, which can include spheres, nanorods, and cubes, among others. Furthermore, the surface chemistry of AuNPs can also be easily modified through conjugation with various polymers, antibodies, small-molecule therapeutics, and molecular probes.
Another prevalent type of INP includes iron oxide nanoparticles (IONPs), which have been widely used since the 1960s for diagnostic imaging and therapeutic purposes. To date, the United States Food and Drug Administration (FDA) has approved several IONPs for both therapeutic and imaging use. In particular, magnetite (Fe3O4) nanoparticles have been used as a contrast agent for magnetic resonance imaging (MRI) due to their extremely low cytotoxicity profile, magnetic responsiveness, tunability, and controlled size and surface modification.
MSNPs have also been studied for their use as stimuli-responsive drug release systems. In this application, the surface of MSNPs can be manipulated to adjust the controlled release of the encapsulated drug after a trigger reaction occurs. Some of the different medications that have been incorporated into MSNP-based drug delivery systems include vancomycin and adenosine triphosphate (ATP).
An Overview of Organic Nanomaterials
Several organic-based nanomaterials, including liposomes, micelles, and polymer nanoparticles, have been developed for drug delivery purposes.
Liposomes, for example, or a type of lipid-based nanomaterial that consists of an aqueous core surrounded by a phospholipid bilayer. This structure is therefore amphiphilic and allows for the formation of a thermodynamically stabilized vesicle. Some of the most common types of phospholipids that are often incorporated into liposomes include phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine, and phosphatidylglycerol. In addition to these phospholipids, stabilizers like cholesterol are also often incorporated into a liposome to increase their stability.
As drug delivery vehicles, liposomes have been shown to improve the permeation of hydrophilic drugs, protect peptides and other protein-based drugs against harsh conditions like the stomach’s acidity, improve the bioavailability of drugs, as well as reduce toxicity and adverse side effects. Notably, the targeting ability and rate of drug release of liposomes depend on the type of lipid incorporated into the liposome and their size, lamellarity, and surface properties.
Applications in Cancer Treatment
Both INPs and organic nanoparticles have been widely studied for their use as drug delivery vehicles for anticancer drugs. For example, AuNPs and IONPs and their combination have been explored for HER2 receptor-based targeting of drugs for the treatment of breast cancer.
Several other HER2-based targeting treatments have been developed based on modified nanocarriers to improve the therapeutic efficacy of specific antineoplastic agents. For example, one recent study discussed the development of trastuzumab conjugated pH-sensitive double-emulsion nanocapsules (DENCs) that are stabilized by both poly (vinyl alcohol) and magnetic nanoparticles. In this work, the researchers used these nanocarriers for the co-delivery of doxorubicin (DOX) and paclitaxel, which were found to improve the targeting ability of these drugs towards HER2 positive breast cancer cells.
The first FDA-approved nanodrug was Doxil®, which is a PEGylated liposomal DOX formulation that passively targets tumors via the enhanced permeability and retention (EPR) effect. Importantly, Doxil® is associated with significantly reduced cardiotoxicity as compared to when DOX is used alone.
Challenges
Despite the numerous advantages associated with both INPs and organic nanoparticles as drug delivery vehicles, several major challenges still account for their limited clinical use. One of the most significant issues includes the regulatory mechanisms currently in place for nanomedicines and the safety and toxicity assessments that need to be better tailored for nanomedical applications….
News
How lipid nanoparticles carrying vaccines release their cargo
A study from FAU has shown that lipid nanoparticles restructure their membrane significantly after being absorbed into a cell and ending up in an acidic environment. Vaccines and other medicines are often packed in [...]
New book from NanoappsMedical Inc – Molecular Manufacturing: The Future of Nanomedicine
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
A Virus Designed in the Lab Could Help Defeat Antibiotic Resistance
Scientists can now design bacteria-killing viruses from DNA, opening a faster path to fighting superbugs. Bacteriophages have been used as treatments for bacterial infections for more than a century. Interest in these viruses is rising [...]
Sleep Deprivation Triggers a Strange Brain Cleanup
When you don’t sleep enough, your brain may clean itself at the exact moment you need it to think. Most people recognize the sensation. After a night of inadequate sleep, staying focused becomes harder [...]
Lab-grown corticospinal neurons offer new models for ALS and spinal injuries
Researchers have developed a way to grow a highly specialized subset of brain nerve cells that are involved in motor neuron disease and damaged in spinal injuries. Their study, published today in eLife as the final [...]
Urgent warning over deadly ‘brain swelling’ virus amid fears it could spread globally
Airports across Asia have been put on high alert after India confirmed two cases of the deadly Nipah virus in the state of West Bengal over the past month. Thailand, Nepal and Vietnam are among the [...]
This Vaccine Stops Bird Flu Before It Reaches the Lungs
A new nasal spray vaccine could stop bird flu at the door — blocking infection, reducing spread, and helping head off the next pandemic. Since first appearing in the United States in 2014, H5N1 [...]
These two viruses may become the next public health threats, scientists say
Two emerging pathogens with animal origins—influenza D virus and canine coronavirus—have so far been quietly flying under the radar, but researchers warn conditions are ripe for the viruses to spread more widely among humans. [...]
COVID-19 viral fragments shown to target and kill specific immune cells
COVID-19 viral fragments shown to target and kill specific immune cells in UCLA-led study Clues about extreme cases and omicron’s effects come from a cross-disciplinary international research team New research shows that after the [...]
Smaller Than a Grain of Salt: Engineers Create the World’s Tiniest Wireless Brain Implant
A salt-grain-sized neural implant can record and transmit brain activity wirelessly for extended periods. Researchers at Cornell University, working with collaborators, have created an extremely small neural implant that can sit on a grain of [...]
Scientists Develop a New Way To See Inside the Human Body Using 3D Color Imaging
A newly developed imaging method blends ultrasound and photoacoustics to capture both tissue structure and blood-vessel function in 3D. By blending two powerful imaging methods, researchers from Caltech and USC have developed a new way to [...]
Brain waves could help paralyzed patients move again
People with spinal cord injuries often lose the ability to move their arms or legs. In many cases, the nerves in the limbs remain healthy, and the brain continues to function normally. The loss of [...]
Scientists Discover a New “Cleanup Hub” Inside the Human Brain
A newly identified lymphatic drainage pathway along the middle meningeal artery reveals how the human brain clears waste. How does the brain clear away waste? This task is handled by the brain’s lymphatic drainage [...]
New Drug Slashes Dangerous Blood Fats by Nearly 40% in First Human Trial
Scientists have found a way to fine-tune a central fat-control pathway in the liver, reducing harmful blood triglycerides while preserving beneficial cholesterol functions. When we eat, the body turns surplus calories into molecules called [...]
A Simple Brain Scan May Help Restore Movement After Paralysis
A brain cap and smart algorithms may one day help paralyzed patients turn thought into movement—no surgery required. People with spinal cord injuries often experience partial or complete loss of movement in their arms [...]
Plant Discovery Could Transform How Medicines Are Made
Scientists have uncovered an unexpected way plants make powerful chemicals, revealing hidden biological connections that could transform how medicines are discovered and produced. Plants produce protective chemicals called alkaloids as part of their natural [...]















