A comprehensive review in “Biofunct. Mater.” meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits of FDA-approved nanodrugs, and innovative approaches to address tumor heterogeneity and treatment resistance. This serves as a foundational framework and pragmatic guide for enhancing precision-based breast cancer therapies.
Breast cancer, the most common cancer among women worldwide, is a major therapeutic challenge because of its profound heterogeneity. Breast cancer can be classified into several molecular subtypes, such as Luminal A, HER2-positive, and triple-negative breast cancer (TNBC), and a treatment that is effective for one patient may not work for another. In addition to this intrinsic heterogeneity, drug resistance and serious side effects have prompted the pursuit of more accurate and precise therapeutic strategies.
Nanomedicine, utilizing engineered nanoparticles for targeted drug delivery to tumors, presents a promising avenue for future treatment strategies. However, the design of an appropriate nanocarrier for individual patients has historically been a complex and often inefficient process of trial and error. The multitude of potential design parameters, including size, surface charge, and targeting ligand density, leads to a combinatorial explosion that is not feasible to test experimentally.
In this review, researchers from Shanghai Jiao Tong University School of Medicine and Guangdong Medical University have proposed a novel, data-driven solution to address the aforementioned challenge. They introduce an “AI-multi-omics intelligent delivery paradigm,” in which a machine learning model is utilized to predict the optimal design of nanocarriers. This prediction is based on the unique biological signatures specific to a patient’s tumor.
We have transitioned from a universal, one-size-fits-all methodology to a subtype-specific, intelligent drug delivery system. Many studies demonstrate that the incorporation of multi-omics data with artificial intelligence can effectively simplify complex processes. For example, in the case of aggressive Luminal B tumors, our model significantly enhanced the synchronization between drug release and peak tumor proliferation rates, increasing it by a factor of 2.8 compared to traditional static nanocarriers.”
Meng-Yao Li, corresponding author
The review methodically delineates the manner in which this paradigm capitalizes on subtype-specific vulnerabilities. In the case of HER2-positive breast cancer, the utilization of trastuzumab-conjugated dendrimers resulted in a reduction of off-target toxicity by 47%. For the treatment of TNBC, a notoriously difficult-to-treat subtype, the employment of EGFR-antibody liposomes amplified tumor accumulation by a factor of 3.2.
The study also presents a comprehensive review of the current state of clinical nanomedicine, ranging from FDA-approved drugs such as Doxil®-which significantly decreases the cardiotoxicity of doxorubicin from 18% to 3%-to promising therapies currently under clinical trials. Notably, preliminary results for ²²⁵Ac-liposomes indicate that 77.8% of patients with metastatic TNBC achieved stable disease status for a duration of six months or longer, without any observed bone marrow toxicity.
“The potential is profound,” elucidates Yimao Wu, a co-first author of the review. “This transcends mere incremental advancements. It offers a viable roadmap to engineer health, morphing breast cancer from a perilous disease into a manageable condition via personalized nanotherapeutic intervention.”
The authors recognize that issues related to large-scale manufacturing and long-term safety continue to impede clinical adoption. Nevertheless, with the incorporation of AI, multi-omics data, and biomimetic nanocarriers such as exosomes, the trajectory of breast cancer treatment is on course to be notably more accurate and efficacious in the future.
This paper ‘Intelligent delivery and clinical transformation of nanomedicine in breast cancer: from basic research to individualized therapy’ was published in Biofunctional Materials (ISSN: 2959-0582), an online multidisciplinary open access journal aiming to provide a peer-reviewed forum for innovation, research and development related to bioactive materials, biomedical materials, bio-inspired materials, bio-fabrications and other bio-functional materials.
Wu, Y., et al. (2025) Intelligent delivery and clinical transformation of nanomedicine in breast cancer: from basic research to individualized therapy. Biofunctional Materials, https://doi.org/10.55092/bm20250014.
News
Very low LDL-cholesterol correlates to fewer heart problems after stroke
Brigham and Women's Hospital's TIMI Study Group reports that in patients with prior ischemic stroke, very low achieved LDL-cholesterol correlated with fewer major adverse cardiovascular events and fewer recurrent strokes, without an apparent increase [...]
“Great Unified Microscope” Reveals Hidden Micro and Nano Worlds Inside Living Cells
University of Tokyo researchers have created a powerful new microscope that captures both forward- and back-scattered light at once, letting scientists see everything from large cell structures to tiny nanoscale particles in a single shot. Researchers [...]
Breakthrough Alzheimer’s Drug Has a Hidden Problem
Researchers in Japan found that although the Alzheimer’s drug lecanemab successfully removes amyloid plaques from the brain, it does not restore the brain’s waste-clearing system within the first few months of treatment. The study suggests that [...]
Concerning New Research Reveals Colon Cancer Is Skyrocketing in Adults Under 50
Colorectal cancer is striking younger adults at alarming rates, driven by lifestyle and genetic factors. Colorectal cancer (CRC) develops when abnormal cells grow uncontrollably in the colon or rectum, forming tumors that can eventually [...]
Scientists Discover a Natural, Non-Addictive Way To Block Pain That Could Replace Opioids
Scientists have discovered that the body can naturally dull pain through its own localized “benzodiazepine-like” peptides. A groundbreaking study led by a University of Leeds scientist has unveiled new insights into how the body manages pain, [...]
GLP-1 Drugs Like Ozempic Work, but New Research Reveals a Major Catch
Three new Cochrane reviews find evidence that GLP-1 drugs lead to clinically meaningful weight loss, though industry-funded studies raise concerns. Three new reviews from Cochrane have found that GLP-1 medications can lead to significant [...]
How a Palm-Sized Laser Could Change Medicine and Manufacturing
Researchers have developed an innovative and versatile system designed for a new generation of short-pulse lasers. Lasers that produce extremely short bursts of light are known for their remarkable precision, making them indispensable tools [...]
New nanoparticles stimulate the immune system to attack ovarian tumors
Cancer immunotherapy, which uses drugs that stimulate the body’s immune cells to attack tumors, is a promising approach to treating many types of cancer. However, it doesn’t work well for some tumors, including ovarian [...]
New Drug Kills Cancer 20,000x More Effectively With No Detectable Side Effects
By restructuring a common chemotherapy drug, scientists increased its potency by 20,000 times. In a significant step forward for cancer therapy, researchers at Northwestern University have redesigned the molecular structure of a well-known chemotherapy drug, greatly [...]
Lipid nanoparticles discovered that can deliver mRNA directly into heart muscle cells
Cardiovascular disease continues to be the leading cause of death worldwide. But advances in heart-failure therapeutics have stalled, largely due to the difficulty of delivering treatments at the cellular level. Now, a UC Berkeley-led [...]
The basic mechanisms of visual attention emerged over 500 million years ago, study suggests
The brain does not need its sophisticated cortex to interpret the visual world. A new study published in PLOS Biology demonstrates that a much older structure, the superior colliculus, contains the necessary circuitry to perform the [...]
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]















