Even though many years have passed since the start of the COVID-19 pandemic, the effects of infection with SARS-CoV-2 are not completely understood. This is especially true for Long COVID, a chronic condition that can develop after COVID-19 that causes a variety of lasting symptoms. Among the most common and debilitating of these is cognitive impairment, often referred to as “brain fog,” which affects over 80% of people with Long COVID. Given the hundreds of millions of global cases, Long COVID represents a massive public health and socioeconomic challenge, as it severely impacts people’s ability to work and perform daily activities.
Unfortunately, despite its prevalence, the underlying causes of Long COVID and brain fog remain poorly understood. Previous imaging studies have shown some structural changes in the brain, but they could not pinpoint the molecular dysfunctions responsible for the cognitive symptoms. Since it’s difficult to observe the molecules that govern communication between brain cells directly, researchers are left without objective biomarkers to confirm a Long COVID diagnosis or develop therapies.
To address this challenge, a research team led by Professor Takuya Takahashi from the Graduate School of Medicine at Yokohama City University, Japan, has made a significant breakthrough in understanding the cause of Long COVID brain fog. As explained in their paper, published in Brain Communications on October 01, 2025, the team hypothesized that patients with brain fog might exhibit disrupted expression of AMPA receptors (AMPARs)-key molecules for memory and learning-based on prior research into psychiatric and neurological disorders such as depression, bipolar disorder, schizophrenia, and dementia. Thus, they used a novel method called [11C]K-2 AMPAR PET imaging to directly visualize and quantify the density of AMPARs in the living human brain.
By comparing imaging data from 30 patients with Long COVID to 80 healthy individuals, the researchers found a notable and widespread increase in the density of AMPARs across the brains of patients. This elevated receptor density was directly correlated with the severity of their cognitive impairment, suggesting a clear link between these molecular changes and the symptoms. Additionally, the concentrations of various inflammatory markers were also correlated with AMPAR levels, indicating a possible interaction between inflammation and receptor expression.
Taken together, the study’s findings represent a crucial step forward in addressing many unresolved issues regarding Long COVID. The systemic increase in AMPARs provides a direct biological explanation for the cognitive symptoms, highlighting a target for potential treatments. For example, drugs that suppress AMPAR activity could be a viable approach to mitigate brain fog. Interestingly, the team’s analysis also demonstrated that imaging data can be used to distinguish patients from healthy controls with 100% sensitivity and 91% specificity. “By applying our newly developed AMPA receptor PET imaging technology, we aim to provide a novel perspective and innovative solutions to the pressing medical challenge that is Long COVID,” remarks Prof. Takahashi.
While further efforts will be needed to find a definitive solution for Long COVID, this work is a promising step in the right direction. “Our findings clearly demonstrate that Long COVID brain fog should be recognized as a legitimate clinical condition. This could encourage the healthcare industry to accelerate the development of diagnostic and therapeutic approaches for this disorder,” concludes Prof. Takahashi.
In summary, the team’s findings resolve key uncertainties about the biological basis of Long COVID brain fog and may pave the way for novel diagnostic tools and effective therapies for patients suffering from this condition.
Fujimoto, Y., et al. (2025). Systemic increase of AMPA receptors associated with cognitive impairment of long COVID. Brain Communications. doi.org/10.1093/braincomms/fcaf337
News
First breathing ‘lung-on-chip’ developed using genetically identical cells
Researchers at the Francis Crick Institute and AlveoliX have developed the first human lung-on-chip model using stem cells taken from only one person. These chips simulate breathing motions and lung disease in an individual, [...]
Cell Membranes May Act Like Tiny Power Generators
Living cells may generate electricity through the natural motion of their membranes. These fast electrical signals could play a role in how cells communicate and sense their surroundings. Scientists have proposed a new theoretical [...]
This Viral RNA Structure Could Lead to a Universal Antiviral Drug
Researchers identify a shared RNA-protein interaction that could lead to broad-spectrum antiviral treatments for enteroviruses. A new study from the University of Maryland, Baltimore County (UMBC), published in Nature Communications, explains how enteroviruses begin reproducing [...]
New study suggests a way to rejuvenate the immune system
Stimulating the liver to produce some of the signals of the thymus can reverse age-related declines in T-cell populations and enhance response to vaccination. As people age, their immune system function declines. T cell [...]
Nerve Damage Can Disrupt Immunity Across the Entire Body
A single nerve injury can quietly reshape the immune system across the entire body. Preclinical research from McGill University suggests that nerve injuries may lead to long-lasting changes in the immune system, and these [...]
Fake Science Is Growing Faster Than Legitimate Research, New Study Warns
New research reveals organized networks linking paper mills, intermediaries, and compromised academic journals Organized scientific fraud is becoming increasingly common, ranging from fabricated research to the buying and selling of authorship and citations, according [...]
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]















