Bacteria that multiply on surfaces are a major headache in health care when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found a new weapon to fight these hotbeds of bacterial growth—one that does not rely on antibiotics or toxic metals.
The key lies in a completely new application of this year’s Nobel Prize-winning material: metal-organic frameworks. These materials can physically impale, puncture and kill bacteria before they have time to attach to the surface.
Because once bacteria attach to a surface, they start to multiply while encasing themselves in what is known as a biofilm—a viscous, slimy coating that protects the bacteria and makes them difficult to kill. Biofilms thrive particularly well in humid environments and can pose serious challenges in health care.
For example, bacteria can attach to medical devices such as catheters, hip replacements and dental implants, and lead to hospital-acquired infections (HAI), also known as nosocomial infections—a widespread problem worldwide that causes great suffering and high health care costs, and an increased risk of the development of antibiotic resistance.
Biofilms can also form on ship hulls, where they can lead to troublesome algal biofouling and barnacle growth, slowing down the ship while increasing its fuel consumption.
Furthermore, antifouling paints containing toxic biocides are often used on ship hulls to combat this problem, with an associated risk of harmful substances leaching into the marine environment. Biofilms in industrial piping systems are also a widespread problem that can cause corrosion, clog the systems, reduce their efficiency, and increase energy consumption, for example.
New way to use metal-organic frameworks
Researchers at Chalmers University of Technology have now found a new way to attack biofilms by coating surfaces with nanostructures—metal-organic frameworks—that kill bacteria mechanically.
The study, published in the journal Advanced Science, was carried out in a collaboration between two teams of researchers at the University: Professor Ivan Mijakovic’s and Professor Lars Öhrström’s.
“Our study shows that these nanostructures can act like tiny spikes that physically injure the bacteria, quite simply puncturing them so that they die. It’s a completely new way of using such metal-organic frameworks,” says the study’s lead author, Zhejian Cao, Ph.D. in Materials Engineering and researcher at Chalmers.
The coating is constructed in a way that allows it to be applied to a variety of surfaces and integrated into other materials. A major advantage of the method is that it prevents or reduces biofilm formation without the need to use antibiotics or toxic metals.
“It fights a major global problem, as it eliminates the risk that controlling bacteria will lead to antibiotic resistance,” says Cao.
Metal-organic frameworks (MOFs) are a new class of materials with exceptional properties where metal ions are interlinked into three-dimensional structures with large cavities and channels in the material.
The Chalmers researchers explored a completely different function for MOFs in their study.
“There have been previous attempts to use metal-organic frameworks for antibacterial purposes, but in those cases the bacteria were killed by toxic metal ions or antimicrobial agents released by the MOFs. Instead, we have grown one MOF on top of another, which results in the formation of sharp nanotips that can puncture and kill the bacteria when they approach,” says Cao. The nanotips were created by controlling the crystalline growth in the material, and a major challenge was finding the right distance between the nanotips to maximize their effect.
“If the distance between the nanotips is too large, bacteria can slip through and attach to the surface. If the distance is too small, however, the mechanical stress exerted by the nanotips on the bacterial cell capsule may be reduced so that the bacteria survive—the same principle that allows you to lie on a bed of nails without getting hurt,” says Cao.
Possible to achieve large-scale production
Lars Öhrström is a co-author of the study and has worked with metal-organic frameworks for 30 years. He emphasizes that there are numerous practical advantages to using MOF coatings for controlling bacteria on surfaces compared to other solutions.
“These coatings can be produced at much lower temperatures than, for example, the graphene arrays previously developed at Chalmers. This facilitates large-scale production and makes it possible to apply the coatings to temperature-sensitive materials such as the plastics used in medical implants. In addition, the organic polymers in metal-organic frameworks can be created from recycled plastics, having the potential to contribute to a circular economy,” says Lars Öhrström.
The study was conducted in Professor Lars Öhrström’s research group at the Department of Chemistry and Chemical Engineering, and in Professor Ivan Mijakovic’s group at the Department of Life Sciences.
More information: Zhejian Cao et al, Mechano‐Bactericidal Surfaces Achieved by Epitaxial Growth of Metal–Organic Frameworks, Advanced Science (2025). DOI: 10.1002/advs.202505976
Journal information: Advanced Science
News
New mRNA therapy targets drug-resistant pneumonia
Bacteria that multiply on surfaces are a major headache in health care when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found [...]
Current Heart Health Guidelines Are Failing To Catch a Deadly Genetic Killer
New research reveals that standard screening misses most people with a common inherited cholesterol disorder. A Mayo Clinic study reports that current genetic screening guidelines overlook most people who have familial hypercholesterolemia, an inherited disorder that [...]
Scientists Identify the Evolutionary “Purpose” of Consciousness
Summary: Researchers at Ruhr University Bochum explore why consciousness evolved and why different species developed it in distinct ways. By comparing humans with birds, they show that complex awareness may arise through different neural architectures yet [...]
Novel mRNA therapy curbs antibiotic-resistant infections in preclinical lung models
Researchers at the Icahn School of Medicine at Mount Sinai and collaborators have reported early success with a novel mRNA-based therapy designed to combat antibiotic-resistant bacteria. The findings, published in Nature Biotechnology, show that in [...]
New skin-permeable polymer delivers insulin without needles
A breakthrough zwitterionic polymer slips through the skin’s toughest barriers, carrying insulin deep into tissue and normalizing blood sugar, offering patients a painless alternative to daily injections. A recent study published in the journal Nature examines [...]
Multifunctional Nanogels: A Breakthrough in Antibacterial Strategies
Antibiotic resistance is a growing concern - from human health to crop survival. A new study successfully uses nanogels to target and almost entirely inhibit the bacteria P. Aeruginosa. Recently published in Angewandte Chemie, the study [...]
Nanoflowers rejuvenate old and damaged human cells by replacing their mitochondria
Biomedical researchers at Texas A&M University may have discovered a way to stop or even reverse the decline of cellular energy production—a finding that could have revolutionary effects across medicine. Dr. Akhilesh K. Gaharwar [...]
The Stunning New Push to Protect the Invisible 99% of Life
Scientists worldwide have joined forces to build the first-ever roadmap for conserving Earth’s vast invisible majority—microbes. Their new IUCN Specialist Group reframes conservation by elevating microbial life to the same urgency as plants and [...]
Scientists Find a Way to Help the Brain Clear Alzheimer’s Plaques Naturally
Scientists have discovered that the brain may have a built-in way to fight Alzheimer’s. By activating a protein called Sox9, researchers were able to switch on star-shaped brain cells known as astrocytes and turn them into [...]
Vision can be rebooted in adults with amblyopia, study suggests
Temporarily anesthetizing the retina briefly reverts the activity of the visual system to that observed in early development and enables growth of responses to the amblyopic eye, new research shows. In the common vision [...]
Ultrasound-activated Nanoparticles Kill Liver Cancer and Activate Immune System
A new ultrasound-guided nanotherapy wipes out liver tumors while training the immune system to keep them from coming back. The study, published in Nano Today, introduces a biodegradable nanoparticle system that combines sonodynamic therapy and cell [...]
Magnetic nanoparticles that successfully navigate complex blood vessels may be ready for clinical trials
Every year, 12 million people worldwide suffer a stroke; many die or are permanently impaired. Currently, drugs are administered to dissolve the thrombus that blocks the blood vessel. These drugs spread throughout the entire [...]
Reviving Exhausted T Cells Sparks Powerful Cancer Tumor Elimination
Scientists have discovered how tumors secretly drain the energy from T cells—the immune system’s main cancer fighters—and how blocking that process can bring them back to life. The team found that cancer cells use [...]
Very low LDL-cholesterol correlates to fewer heart problems after stroke
Brigham and Women's Hospital's TIMI Study Group reports that in patients with prior ischemic stroke, very low achieved LDL-cholesterol correlated with fewer major adverse cardiovascular events and fewer recurrent strokes, without an apparent increase [...]
“Great Unified Microscope” Reveals Hidden Micro and Nano Worlds Inside Living Cells
University of Tokyo researchers have created a powerful new microscope that captures both forward- and back-scattered light at once, letting scientists see everything from large cell structures to tiny nanoscale particles in a single shot. Researchers [...]
Breakthrough Alzheimer’s Drug Has a Hidden Problem
Researchers in Japan found that although the Alzheimer’s drug lecanemab successfully removes amyloid plaques from the brain, it does not restore the brain’s waste-clearing system within the first few months of treatment. The study suggests that [...]














