A new drug designed by scientists at Scripps Research can turn the COVID-19 virus into a harbinger of its own doom.
“What’s so neat about this drug is that we’re actually turning the virus against itself,” says senior author Stuart Lipton, MD, Ph.D., the Step Family Endowed Chair and Scripps Research professor. “We’re arming it with little molecular warheads that end up preventing it from infecting our cells; it’s our revenge on the virus.”
Before the COVID-19 pandemic, Lipton and his colleagues had long been studying variations of the drug memantine, which Lipton developed and patented in the 1990s for treating neurological diseases like Alzheimer’s. While memantine originated from an anti-influenza drug used in the 1960s, clinicians began investigating it for additional diseases after they noticed a woman with Parkinson’s symptoms improved when she took the drug for the flu.
“My team had made these antiviral drugs better for the brain, and when COVID-19 emerged, we wondered whether we had also, in the process, made any of them better antivirals,” says Lipton.
Lipton and his team tested a library of compounds similar to memantine in overall structure but covered with additional pharmacological warheads. They pinpointed the drug candidate designated NMT5 as having two key properties: It could recognize and attach to a pore on the surface of SARS-CoV-2, and it could chemically modify human ACE2 using a fragment of nitroglycerin as the warhead. The group realized this could turn the virus into a delivery vehicle for its own demise.
In the new paper, Lipton’s group characterized and tested NMT5 in isolated cells as well as animals. They showed how NMT5 attaches tightly to SARS-CoV-2 viral particles as the viruses move through the body. Then, they revealed the details of how the drug adds a chemical (similar to nitroglycerin) to certain molecules if it gets close enough. When the virus gets near ACE2 to infect a cell, that translates into NMT5 adding a “nitro group” to the receptor. When ACE2 is modified in this way, its structure temporarily shifts—for about 12 hours—so that the SARS-CoV-2 virus can no longer bind to it to cause infection.
In cell culture experiments testing how well the Omicron variant of SARS-CoV-2 can attach to human ACE2 receptors, the drug prevented 95% of viral binding. In hamsters with COVID-19, NMT5 decreased virus levels by 100-fold, eliminated blood vessel damage in the animals’ lungs, and ameliorated inflammation. The drug also showed effectiveness against nearly a dozen other variants of COVID-19, including alpha, beta, gamma and delta strains.
Most anti-viral drugs work by directly blocking part of a virus—which can pressure the virus to evolve resistance to the drug. Since NMT5 is only using the virus as a carrier, the researchers think the drug is likely to be effective against many other variants of SARS-CoV-2.
“We expect this compound would continue to be effective even as new variants emerge, because it doesn’t rely on attacking parts of the virus that commonly mutate,” says Chang-ki Oh, a senior staff scientist and first author of the new paper.
Though they have only studied the compound in animal models, the team is now making a version of the drug to evaluate for human use, while carrying out additional safety and effectiveness trials in animals.
“These exciting findings suggest a new avenue for drug development that requires drug combinations for effective pandemic preparedness,” says co-author Arnab Chatterjee, Ph.D.
In addition to Lipton, Oh and Chatterjee, authors of the new paper are Tomohiro Nakamura, Nathan Beutler, Xu Zhang, Juan Piña-Crespo, Maria Talantova, Swagata Ghatak, Dorit Trudler, Lauren N. Carnevale, Scott R. McKercher, Malina A. Bakowski, Jolene K. Diedrich, Amanda J. Roberts, Ashley K. Woods, Victor Chi, Anil K. Gupta, Namir Shaabani, Hejun Liu, Ian A. Wilson, Dennis R. Burton, John R. Yates III and Thomas F. Rogers of Scripps Research; Mia A. Rosenfeld, Fiona L. Kearns, Lorenzo Casalino and Rommie E. Amaro of UCSD; and Cyrus Becker of EuMentis Therapeutics, Inc.
News
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]
New technique overcomes technological barrier in 3D brain imaging
Scientists at the Swiss Light Source SLS have succeeded in mapping a piece of brain tissue in 3D at unprecedented resolution using X-rays, non-destructively. The breakthrough overcomes a long-standing technological barrier that had limited [...]
Scientists Uncover Hidden Blood Pattern in Long COVID
Researchers found persistent microclot and NET structures in Long COVID blood that may explain long-lasting symptoms. Researchers examining Long COVID have identified a structural connection between circulating microclots and neutrophil extracellular traps (NETs). The [...]
This Cellular Trick Helps Cancer Spread, but Could Also Stop It
Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to limit tumor spread. The tale of the princess and the [...]















