Scientists from the Suzhou Institute of Biomedical Engineering and Technology (SIBET) of the Chinese Academy of Sciences and the South China University of Technology collaborated to create near-infrared (NIR)-powered nano-assemblies with size and charge dual transformation for the integration of photo-controlled chemotherapy and immunotherapy in breast cancer.
The findings of the study have been recently reported in Theranostics.
Nanotechnology has novel benefits in enhancing the bioavailability of substances that are poorly soluble, accomplishing well-regulated and targeted drug release, and incorporating various therapeutic methods on the same platform.
Nevertheless, there are many biological hurdles in real-world applications, including transvascular transport, blood circulation, dense tumor extracellular matrix and malformed tumor vessels, thus, the majority of the nanoparticles are mostly localized around the outer edges of the tumor, and it is hard to enter the tumor to exercise cell-killing effect.
During this study, the team engineered diselenide-bridged mesoporous organosilica nanoparticles as a reactive oxygen species (ROS)-responsive core for the loading of chemotherapeutic agent doxorubicin (DOX). They then coated an indocyanine green (ICG)-hybrid N-isopropyl acrylamide layer to create a thermosensitive shell.
The negatively charged thermosensitive layer prevents DOX leakage, rendering prolonged blood circulation time and high tumor accumulation.
Wenfei Dong, Researcher, SIBET
When irradiated with NIR light, mild photothermal effects enable the dissociation of the thermosensitive shell to accomplish negative-to-positive surface charge reversal. In the meantime, ICG-produced ROS cleaves the diselenide bond of the organosilica core, resulting in quick matrix degradation that creates DOX-comprising smaller fragments (115-20 nm).
Such a NIR light-triggered charge and size dual-transformable nano-assembly allows tumor buildup and deep penetration, improves chemotherapy effectiveness and prompts strong immunogenic cell death effects in vivo and in vitro.
In animal research, integrated with programmed cell death protein-1 checkpoint blockade, the nano-platform considerably obstructed major tumor development and pulmonary metastasis of breast cancer, significantly decreasing the harmful side effects of free drugs.
This research offers a new system for a safe and effective combination treatment for breast cancer. The researchers will alter the antibodies on the surface of the nano-assembly to improve the active targeting of tumors and endeavor to use the platform to transport gene-editing tools for gene therapy of tumors.

News
Can our mitochondria help to beat long Covid?
At Cambridge University’s MRC Mitochondrial Biology Unit, Michal Minczuk is one of a growing number of scientists around the world aiming to find new ways of improving mitochondrial health. This line of research could help [...]
Lipid nanoparticles carry gene-editing cancer drugs past tumor defenses
As they grow, solid tumors surround themselves with a thick, hard-to-penetrate wall of molecular defenses. Getting drugs past that barricade is notoriously difficult. Now, scientists at UT Southwestern have developed nanoparticles that can break [...]
Graphene Nanosensor Detects Biomarkers Through Tears
In an article recently published in the journal Talanta, researchers demonstrated a new approach to enable the specific detection of biomarkers in human tear by employing an aptamer-based graphene affinity nanosensor. The ability to detect [...]
How Nanotechnology Can Make a Splash in Aquaculture
Selenium (Se) is an essential element found in aquatic feeds that promotes the proper development, wellbeing, and fitness of marine animals. Selenium can be transformed into nanomaterials that are more easily accessible, absorbed, and consumed by [...]
Super-Resolution Imaging Method For Multiple Fluorescence Microscopy Applications
In an article recently published in the journal Nanotechnology, researchers employed a single particle imaging method for fluorescence excitation with moderate intensity to achieve spatial resolution. Here, the semiconductor nanocrystals were accessed, whose emission lifetimes [...]
Trials to begin on new SA COVID-19 vaccine
A new COVID-19 vaccine developed in South Australia and administered with a needle-free device is to begin human trials. Designed by University of Adelaide researchers the DNA vaccine also targets the Omicron variant of [...]
Towards Carbon Clean Manufacturing with Eco-Friendly Nano-Lubricants
Grinding is an essential manufacturing process, yet the heat due to friction associated with the process causes damage to the part being processed. Lubrication is used to reduce friction; however, traditional petroleum-based lubricants can [...]
Researchers develop hybrid sensor that could help diagnose cancer
A team of researchers from HSE University, Skoltech, MPGU, and MISIS have developed a nanophotonic-microfluidic sensor whose potential applications include cancer detection, monitoring and treatment response assessment. Today, the device can identify gases and [...]
Scientists Develop ‘Nanomachines’ That Can Penetrate And Kill Cancer Cells
Researchers have made a scientific breakthrough with the development of ‘nanomachines’ that can kill cancerous cells. The research team headed by Dr Youngdo Jeong from the Center for Advanced Biomolecular Recognition at the Korea Institute of Science and Technology (KIST) has engineered [...]
Green Method to Make Nanoparticles and Ultrafine Powder
A novel freeze-dissolving approach has been devised that offers greater efficiency and sustainability compared to the classic freeze-drying process to make superfine powder or nanoparticles. In the research published in the journal ACS Sustainable Chemistry & Engineering, sphere-shaped [...]
Participants wanted for study on the regulation of what future AI-driven nanomedicines should look like
Would you like to help in some research on the regulation of what future AI-driven nanomedicines should look like? If so, researchers at the University of Bristol are looking for volunteers to discuss ethical [...]
Could gold nanoparticles help treat cancer?
Gold nanoparticles are minuscule particles made of gold. From drug and gene delivery to photothermal and photodynamic therapies to screening and diagnostic tests to radiation therapy, X-ray imaging and CT scans, these small particles [...]
Carbon Dots Target Nucleolus and Monitor in Real-Time
In an article recently published in the journal Applied Surface Science, the researchers synthesized green fluorescent carbon dots (G-CDs) from 3,5-diaminobenzoic acid and citric acid. The as-prepared G-CDs were used to target the nucleolus and [...]
Green Nanoformulation for Anti-Cancer and Antibacterial Functions
Doxorubicin (DOX) is a powerful anti-cancer medication, and efforts have been made to design nanostructures for delivering it to cancerous cells. The nanostructures increase the cytotoxic effects of DOX on cancerous cells, while reducing the negative effects [...]
New drug delivery system releases therapeutic cargo only when bacteria are present
A team of Brown University researchers has developed a new responsive material that is able to release encapsulated cargo only when pathogenic bacteria are present. The material could be used to make wound dressings [...]
Hairy Cell Leukemia Complicated by Severe COVID-19: A Case Study
Novel three-drug regimen used to manage life-threatening developments. In April 2021, a 42-year-old man reached out to Brian Hill, MD, PhD, for a second opinion after being diagnosed with hairy cell leukemia following a bone [...]