In a study published in the journal ACS Applied Materials & Interfaces, a mix of chemistry, nanomaterials, and artificial intelligence (AI) was used to produce a straightforward yet cryptographic anticounterfeiting measure.
The Need for Effective Anticounterfeiting Techniques
The requirement for robust anti-counterfeit solutions is driving scholarly and corporate research to enhance the authenticity and safety of products. The spread of counterfeit commodities is a huge nuisance all over the globe, particularly in the retail and pharmaceutical industries. Fake pharma goods endanger patients and compromise public health, resulting in high economic and social costs for developed as well as developing nations.
To put the magnitude of the issue into perspective, counterfeit medications for treatments of pneumonia and malaria kill roughly 250,000 children annually. Such a significant problem necessitates a serious technical effort to develop powerful anti-counterfeit technologies that are also consistent with market constraints.
Numerous substances and chemical procedures have been suggested as biometric markers. These vary from intricate ink compositions utilized in currency notes to luminous upconverting nano-phosphorous tags, inkjet printable conjugate polymeric platforms, or molecular identifiers like peptides, DNA, and polymers that promise large encoding potentials and secrecy.
These technologies, however, may be cloneable. Moreover, they often need costly hardware and highly skilled workers, restricting their practical uses.
Nanotechnology can Improve PUFs
A highly sophisticated anti-counterfeit technique was provided in this system using physically unclonable functions (PUFs) that are predicated on distinct markers created by chemical procedures in a stochastic mechanism. The unpredictability created by the non-deterministic technique assures that replicating the PUF key is just about impossible whenever the PUF sequence is digitized and saved.
If there are not enough distinct markers to secure a significant number of objects, PUFs’ encoding capability may be restricted. Owing to the unpredictability and huge parametric space provided by nanostructures paired with physiochemical procedures, this problem may be solved if PUFs are created using methods based on nanotechnology that provide a significant encoding potential which translates to a large quantity of distinct markers.
Critical Aspects of PUFs
The distinguishing physical trait is often a randomized two-dimensional or three-dimensional pattern, leading to various visual readings. Certain nanotechnology-based PUFs, like glass microbead randomized speckle patterning, inkjet-printed unclonable quantum dot (QD) fluorescent tags, and Au nanoparticle (NP) or Ag nanowire (NW) randomized patterns have lately been described.
Tag reading is crucial because several approaches depend on intricate hardware for verification, like dark-field, fluorescent, or electron microscopy, limiting their applicability for the overall supply chain needs, like mobility, quickness, repeatability, and reduced price of the procedure.
Salient Features of the Study
The technique suggested in this study aimed to achieve all of the aforementioned desirable characteristics, delivering an adequate anti-counterfeit approach via a rapid (1 minute), reversible, and equipment-free colorimetry reading facilitated by nanoscale Pt catalysts, which would be usable at any juncture of the supply network, even the end user.
Owing to the creation of a dependable AI method for quick and reliable visual marker authentication on the basis of Deep Learning and Computer Vision approaches, this nanotechnology-facilitated system may be readily encoded and then authorized via a cellphone.
Key Takeaways
In this study, the team demonstrated the possibility of merging chemistry, nanotechnology, and artificial intelligence to build novel cross-discipline techniques aimed at addressing critical sustainability and security challenges.
A sophisticated reversible PUF marker was presented that combined the achievement of distinct patterning with substantial encryption capabilities with a visual colorimetry reading perceptible by the human eye and analyzable using a cellphone.
The approach adopted by the team provided great ease in authenticating (i.e., equipment-free visual reading) as well as cutting-edge encryption capabilities by using the catalytic characteristics of nanoparticles. The suggested technique may be improved by creating various stochastic patterns and platforms, resulting in even greater security levels.
The ability to achieve repeated verification cycles in ambient settings, owing to the rapid (ON/OFF) color emergence/fading system evoked by the nanoscale platinum catalysts, opens up fresh avenues for in-situ analyses of potential counterfeits of high-quality goods throughout the entire supply network, from quality control after production to individual evaluation by the end-user.

News
Why ‘Peniaphobia’ Is Exploding Among Young People (And Why We Should Be Concerned)
An insidious illness is taking hold among a growing proportion of young people. Little known to the general public, peniaphobia—the fear of becoming poor—is gaining ground among teens and young adults. Discover the causes [...]
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]