Scientists at the National Institute of Standards and Technology (NIST) have developed a new technology for measuring how radiation damages DNA molecules. This novel technique, which passes DNA through tiny openings called nanopores, detects radiation damage much faster and more accurately than existing methods. It could lead to improved radiation therapy for cancer and more personalized care for individuals during radiological emergencies.
“With nanopore sensing, we’re not just measuring radiation damage; we’re rewriting the rules on how quickly and effectively we can respond to both cancer care and emergencies,” said NIST physical scientist Joseph Robertson.
The research has now successfully completed the proof-of-concept phase, having been demonstrated in the laboratory using carefully prepared DNA in a test tube. Future plans involve developing a portable version of the technology and utilizing the technique to measure radiation damage to DNA extracted from biological cells and tissues.
How the new technology works
Current methods for measuring the biological effects of radiation are slow and often ineffective at providing results when needed, particularly in medical and emergency situations. To assess radiation damage in an individual exposed to radiation, medical professionals take a blood sample and either count the number of dead cells (a process that takes at least two days) or culture cells from the sample to detect chromosomal abnormalities (which takes at least three days).
These existing techniques have a limited range and cannot measure doses above about 5 gray, which is lower than what an individual may be exposed to in a major radiological incident. A gray (Gy) is a unit that expresses the amount of radiation energy absorbed by the body or an object per kilogram of mass.
The new technique, published in Analytical Chemistry, is particularly effective for measuring doses between 2 Gy and 10 Gy—a crucial range of radiation exposure in humans that necessitates immediate medical care. It can produce results within minutes rather than days, with significantly higher accuracy than previously achievable.
The method leverages the fact that ionizing radiation, such as X-rays and gamma rays, breaks DNA into smaller fragments.
To demonstrate the new approach, researchers utilized radiation-damaged DNA samples. They passed the DNA fragments through a nanopore, which had an electric current flowing through it. DNA molecules that passed through the nanopore caused disruptions in the current.
By monitoring these variations, the researchers could measure the number of DNA fragments transiting the nanopore and determine their lengths. This information allowed the researchers to accurately calculate the effective radiation dose that impacted the DNA.
Tailoring therapies for better outcomes
In the quest to enhance cancer treatment, real-time monitoring of radiation exposure is essential.
“Too little radiation can fail to destroy cancer cells, while too much can harm healthy tissue,” said Robertson. “The ability to monitor radiation exposure in real time means doctors can adjust treatments to ensure the right dosage.”
This technology could also track how well a tumor is responding to radiation, allowing for personalized adjustments to treatment. By directly measuring DNA damage in cancer cells, doctors can tailor therapies more precisely to each patient.
Rapid response in emergencies
In radiological emergencies like nuclear accidents or radiation poisoning, the ability to quickly assess radiation exposure is crucial. Traditional methods may take days, but with this new technology, first responders can obtain real-time data in minutes.
“This would allow medical teams to quickly prioritize care for those most at risk,” said Robertson.
NIST’s breakthrough could transform responses to radiation emergencies and assist in saving lives by ensuring that individuals receive the appropriate care as quickly as possible.
One of the key advantages of this technology is its potential portability. NIST researchers are collaborating with industry partners to develop a device that could be as small and affordable as a smartphone, making it easily accessible in hospitals, emergency response situations, and even field settings. In the coming years, researchers hope to partner with commercial entities to build a prototype device.
This technology not only signifies a substantial advance in measuring DNA damage but also underscores NIST’s commitment to enhancing public health and safety through innovative science.
“This technology isn’t merely a leap forward; it’s a lifeline,” said Robertson. “By making radiation measurement precise and accessible, we’re striving to ensure that help is always within reach.”
More information: Michael Lamontagne et al, Single–Molecule Biodosimetry, Analytical Chemistry (2025). DOI: 10.1021/acs.analchem.5c03303
Journal information: Analytical Chemistry
Provided by National Institute of Standards and Technology

News
Scientists Discover a New Form of Ice That Shouldn’t Exist
Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure. Ice comes in many forms, even when made of nothing but water [...]
Nobel-winning, tiny ‘sponge crystals’ with an astonishing amount of inner space
The 2025 Nobel Prize in chemistry was awarded to Richard Robson, Susumu Kitagawa and Omar Yaghi on Oct. 8, 2025, for the development of metal-organic frameworks, or MOFs, which are tunable crystal structures with extremely [...]
Harnessing Green-Synthesized Nanoparticles for Water Purification
A new review reveals how plant- and microbe-derived nanoparticles can power next-gen water disinfection, delivering cleaner, safer water without the environmental cost of traditional treatments. A recent review published in Nanomaterials highlights the potential of green-synthesized nanomaterials (GSNMs) in [...]
Brainstem damage found to be behind long-lasting effects of severe Covid-19
Damage to the brainstem - the brain's 'control center' - is behind long-lasting physical and psychiatric effects of severe Covid-19 infection, a study suggests. Using ultra-high-resolution scanners that can see the living brain in [...]
CT scan changes over one year predict outcomes in fibrotic lung disease
Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease progression and survival in [...]
AI Spots Hidden Signs of Disease Before Symptoms Appear
Researchers suggest that examining the inner workings of cells more closely could help physicians detect diseases earlier and more accurately match patients with effective therapies. Researchers at McGill University have created an artificial intelligence tool capable of uncovering [...]
Breakthrough Blood Test Detects Head and Neck Cancer up to 10 Years Before Symptoms
Mass General Brigham’s HPV-DeepSeek test enables much earlier cancer detection through a blood sample, creating a new opportunity for screening HPV-related head and neck cancers. Human papillomavirus (HPV) is responsible for about 70% of [...]
Study of 86 chikungunya outbreaks reveals unpredictability in size and severity
The symptoms come on quickly—acute fever, followed by debilitating joint pain that can last for months. Though rarely fatal, the chikungunya virus, a mosquito-borne illness, can be particularly severe for high-risk individuals, including newborns and older [...]
Tiny Fat Messengers May Link Obesity to Alzheimer’s Plaque Buildup
Summary: A groundbreaking study reveals how obesity may drive Alzheimer’s disease through tiny messengers called extracellular vesicles released from fat tissue. These vesicles carry lipids that alter how quickly amyloid-β plaques form, a hallmark of [...]
Ozone exposure weakens lung function and reshapes the oral microbiome
Scientists reveal that short-term ozone inhalation doesn’t just harm the lungs; it reshapes the microbes in your mouth, with men facing the greatest risks. Ozone is a toxic environmental pollutant with wide-ranging effects on [...]
New study reveals molecular basis of Long COVID brain fog
Even though many years have passed since the start of the COVID-19 pandemic, the effects of infection with SARS-CoV-2 are not completely understood. This is especially true for Long COVID, a chronic condition that [...]
Scientists make huge Parkinson’s breakthrough as they discover ‘protein trigger’
Scientists have, for the first time, directly visualised the protein clusters in the brain believed to trigger Parkinson's disease, bringing them one step closer to potential treatments. Parkinson's is a progressive incurable neurological disorder [...]
Alpha amino acids’ stability may explain their role as early life’s protein building blocks
A new study from the Hebrew University of Jerusalem published in the Proceedings of the National Academy of Sciences sheds light on one of life's greatest mysteries: why biology is based on a very specific set [...]
3D bioprinting advances enable creation of artificial blood vessels with layered structures
To explore possible treatments for various diseases, either animal models or human cell cultures are usually used first; however, animal models do not always mimic human diseases well, and cultures are far removed [...]
Drinking less water daily spikes your stress hormone
Researchers discovered that people who don’t drink enough water react with sharper cortisol spikes during stressful events, explaining why poor hydration is tied to long-term health risks. A recent study in the Journal of Applied [...]
Nanomed Trials Surge Highlighting Need for Standardization
Researchers have identified over 4,000 nanomedical clinical trials in progress now, highlighting rapid growth in the field and the need for a standardized lexicon to support clinical translation and collaboration. Nanotechnology is the science of [...]