Malignant brain tumors are cancerous growth in the brain with the possibility of spreading to other parts of the central nervous system (CNS). Brain tumors are highly invasive and have devastating consequences, poor prognosis, and low survival rates.
Recently, the noninvasive near-infrared fluorescence and photoacoustic imaging techniques have demonstrated a bright scope in brain tumor diagnosis with high spatiotemporal resolution, large penetration depth, and good sensitivity. Hence, these imaging techniques have been used to guide real-time brain tumor therapy with high efficiency and accuracy.
An article published in the journal Advanced Drug Delivery Reviews presented a summary of state-of-art near-infrared contrast agents (CAs) and optical imaging-guided therapies for brain tumor imaging. Finally, the opportunities and challenges involved in the use of CAs and nanotheranostics for future clinical translation were discussed.
Near-Infrared Fluorescence Imaging of Brain Tumors
The brain tumor is an intracranial neoplasm in the brain or the central spinal canal. An abnormal and uncontrolled cell division, usually in the brain, involving neurons or glial cells or occasionally in the lymphatic tissue, blood vessels, and others, is the main leading cause of the formation of primary brain tumors. The majority of the brain tumors in adults are secondary or metastatic tumors, that is, cancers primarily located in other organs and may spread to the brain and create brain tumors.
Diagnosis of brain tumors is the critical step for effective curing of the disease, and it vividly relies on the advancements in molecular imaging technology. Although various imaging modalities, including magnetic resonance imaging (MRI), positron emission tomography (PET) imaging, and computed tomography (CT) imaging were investigated for the detection of brain tumors, these modalities possess several limitations.
In this regard, fluorescence imaging is a method that relies on fluorescence, absorption, bioluminescence, and reflectance resulting from various fluorescent nanomaterials used for visualizing the brain microstructures and monitoring the tumor progression.
Nevertheless, the effectiveness and safety of fluorescence imaging, using visible light for fluorescence imaging, displayed limited penetration of the light and resulted in decreased light-tissue interactions. Light in the near-infrared range (wavelength: 650–900 nanometers) has several advantages over visible-range light, including deeper tissue penetration due to less absorption by hemoglobin and water and less autofluorescence from surrounding tissues. Consequently, a new scope has emerged for near-infrared fluorescence imaging for detecting and treating brain tumors.
Near-infrared fluorescence imaging of brain tumors is a growing field for preclinical and clinical applications in clinical management due to its advantageous features, including a high spatial resolution, portability, real-time display, and detailed molecular profiling with the multiplexed use of fluorescent probes.
Similarly, near-infrared photoacoustic imaging (PAI) is a noninvasive imaging technique that involves acoustic waves as the emission source. It combines the advantages of ultrasonic and optical energies to realize biological imaging with deep tissue penetration depth. Thus, making PAI a promising diagnosis technique.
Near Infrared Optical Imaging-Guided Treatment of Brain Tumors
Near-infrared optical imaging-guided brain tumor therapy has been used in theranostics. Various therapeutic functions have been demonstrated with the assistance of near-infrared fluorescence imaging and PAI.
Despite encouraging progress, several obstacles remain in transitioning optical imaging techniques to clinical applications. As safety is the primary concern for the clinical translation of nanomedicine, nanotheranostics and nanoprobes are subjected to various surface modifications using biocompatible polymers to reduce their toxicities.
Near-infrared fluorescence imaging and PAI have vividly helped in the diagnosis of cancer. However, the presence of the skull and scalp hampers the quality of light and the imaging of brain tumors. This suggests that the second near-infrared region (NIR-II) can increase tissue penetration and depth while decreasing light scattering and enhancing the signal-to-background ratio. Consequently, deep-seated brain tumors can also be diagnosed.
CAs with excited-state intramolecular motion have good prospects for fine-tuning the balance between nonradiative and radiative decay in dual-mode near-infrared fluorescence imaging or PAI. Near-infrared fluorescence imaging CAs, including organic dyes, semiconducting polymer dots, aggregation-induced emission luminous, and inorganic (quantum dots and rare-earth nanoparticles) probes, have been investigated for the diagnosis of brain tumors.
Conclusion
Overall, multimodal optical imaging techniques can decrease misdiagnosis rates of brain tumors and provide functional and anatomical information. Moreover, theranostic agent-based imaging guidance and combination treatment can enhance the treatment outcomes of brain tumors and reduce side effects.
Furthermore, nanoparticles less than 5 nanometers in size are favorable for renal excretion and reduce toxicity during treatment. Thus, the fabrication of biodegradable nanomaterials followed by toxicity evaluations can increase the clinical success of treatment.
In the case of brain tumors, the blood-brain barrier restricts the entry of nanoagents into brain tissues. In this regard, peptides with targeting abilities and focused ultrasound (FUS) assistance can help deliver nanoagents to brain tumors for diagnosis and therapy.
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]















