Although combining radiation therapy (RT) with immune checkpoint blockade (ICB) could activate an in situ vaccine effect, RT limits the tumor antigen presentation and cannot overcome suppressive mechanisms in the tumor microenvironment (TME), limiting the vaccine effect.
An article published in the journal Nature Communications presented a solution to overcome the above challenges by developing PIC multifunctional nanoparticles based on poly-(L-lysine) (PLL), CpG oligodeoxynucleotide (CpG), and iron oxide nanoparticles (ION). The designed nanoparticles served as radiation sensitizers, improved the tumor antigen presentation, increased the M1:M2 ratio of tumor-associated macrophages, and enhanced the stimulation of a type I interferon response combined with RT.
The therapy using the combination of RT, PIC nanoparticles, and ICB in immunologically “cold” murine tumor models improved the tumor response, increased the survival rate, and activated the tumor-specific immune memory. Utilizing the designed PIC nanoparticles in RT evoked the in situ vaccine effect, potentiated adaptive anti-tumor immunity, and augmented the response to ICB and other potential immunotherapies.
Role of Nanoparticles in Cancer Immunotherapy
Despite the success of cancer immunotherapy, patients with immunologically “cold” tumors are less likely to respond to ICB therapy. The “cold” tumors are characterized by limited immune cell infiltration and low neoantigen load. The in situ cancer vaccination converts a patient’s tumor into a nidus to present tumor-specific antigens and to stimulate and diversify anti-tumor T cell response. Thus, improving the response rates of immunologically “cold” tumors.
At least half of cancer patients receive RT at some point in their cancer treatment which helps in activating the in situ vaccine response. RT stimulates the immunogenic cell apoptosis, increases tumor infiltration by immune cells, and enhances the immune-mediated killing of tumor cells. Although RT may induce many favorable effects in the tumor microenvironment (TME), it may also lead to detrimental effects on cells due to a lack of specificity.
Due to the development of nanotechnology, nanomaterials with heavy metals showed promising radio-sensitization to enhance the favorable RT outcomes, such as gold and silver nanoparticles, which can efficiently absorb, scatter, emit radiation energy, and are easily eliminated by metabolism. Recently, cancer immunotherapy has emerged as a promising treatment, and immune checkpoint regulation has the potential property to improve clinical outcomes in cancer immunotherapy.
Multifunctional Nanoparticles to Potentiate the In Situ Vaccination Effect
The cancer immunotherapy resistant “cold” tumors are characterized by low tumor neoantigen load, few tumor-infiltrating effector T cells, and activation of immune suppressive mechanisms in TME. Previously conducted clinical studies confirmed the safe combination of RT and ICB in improving response and survival rate, particularly in patients with “cold” tumors.
Besides the above advantages, RT was also reported to cause detrimental local effects on the TME. To increase the capacity of RT in eliciting in situ vaccination, the combination of RT with the therapeutic agent was hypothesized to augment the effect of RT in activating T-cell immunity.
In the present work, PIC nanoparticles were designed to improve the in situ vaccine effect of RT, facilitate anticancer response against “cold” tumors, and increase their response to ICBs. The results suggested that this approach could offer an effective strategy that permits the use of off-the-shelf treatment in realizing in situ vaccine effect. Here a patient’s tumor is transformed into nidus to present tumor-specific antigens, stimulating and diversifying the anti-tumor T cell response against the patient’s cancer cells.
Additionally, combining anti-CTLA-4 with PIC nanoparticles and RT in situ vaccination showed greater tumor response, improving the survival rate and tumor-specific immune memory compared to RT or PIC nanoparticles or combined treatment. Moreover, the mouse model treated with PIC nanoparticles + RT or PIC nanoparticles + RT + anti-CTLA-4 did not show any hepatic, gastrointestinal, renal, or autoimmune toxicities, confirming the biosafety of the proposed strategy.
Conclusion
To summarize, the present work demonstrated that the designed PIC nanoparticles had the advantages of reproducibility and scalability. Following RT, the nanoparticles modulated the tumor-immune microenvironment, favoring the activation of an in situ vaccine effect.
Immunotherapies and ICBs are extensively used to treat cancer patients. However, the limiting response of “cold” cancers to these therapies was an issue of concern. The multifunctional PIC nanoparticles resolved the above issue by potentiating the vaccination effect and augmenting the response rate of “cold” cancers to ICBs.
Thus, the results confirmed the promising application of PIC nanoparticles in combination with ICB and RT and its translation to the preclinical and early phases of clinical trials in treating metastatic cancers.

News
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]
Instant coffee may damage your eyes, genetic study finds
A new genetic study shows that just one extra cup of instant coffee a day could significantly increase your risk of developing dry AMD, shedding fresh light on how our daily beverage choices may [...]
Nanoneedle patch offers painless alternative to traditional cancer biopsies
A patch containing tens of millions of microscopic nanoneedles could soon replace traditional biopsies, scientists have found. The patch offers a painless and less invasive alternative for millions of patients worldwide who undergo biopsies [...]
Small antibodies provide broad protection against SARS coronaviruses
Scientists have discovered a unique class of small antibodies that are strongly protective against a wide range of SARS coronaviruses, including SARS-CoV-1 and numerous early and recent SARS-CoV-2 variants. The unique antibodies target an [...]
Controlling This One Molecule Could Halt Alzheimer’s in Its Tracks
New research identifies the immune molecule STING as a driver of brain damage in Alzheimer’s. A new approach to Alzheimer’s disease has led to an exciting discovery that could help stop the devastating cognitive decline [...]
Cyborg tadpoles are helping us learn how brain development starts
How does our brain, which is capable of generating complex thoughts, actions and even self-reflection, grow out of essentially nothing? An experiment in tadpoles, in which an electronic implant was incorporated into a precursor [...]