A simple and effective preparation for the protection of in vitro-derived seedlings from phytopathogens has been developed by a scientific team of NUST MISIS together with colleagues from Voronezh and Tambov. Small doses of copper oxide nanoparticles in its composition work as an immunostimulator of plants. As a result, scientists are planning to obtain a preparation that will increase the amount of harvested planting material. The results of the work have been published in the Nanomaterials international scientific journal.
There are some challenges with the new technology: as nutrient media for phytoclones provide ideal conditions for microbial growth, new plants need to be created and maintained in complete sterility. Antibiotics are increasingly being used to reduce the risk of contamination in plants propagated in vitro.
However, along with the bactericidal effect, antibiotics can also have a toxic effect on plant tissues, inhibit their growth and development. In addition, microorganisms can adapt to biocidal drugs by mutations, which leads to the resistance of phytopathogens. According to Russian scientists, the use of nanoparticles as sterilizing agents could be a safe alternative to antibiotics.
The research team of scientists from NUST MISIS, Voronezh State University of Forestry and Technologies named after G.F. Morozov and Tambov State University named after G. R. Derzhavin aimed to assess the effects of copper oxide nanoparticles on the growth of colonies of spore-forming mold fungi, as well as on the production of stress resistance genes in birch clones in vitro when infected with phytopathogens.
“As we expected, copper oxide nanoparticles had a pronounced antifungal effect on phytopathogens in plant culture, which is consistent with the results of a number of previous studies. As possible mechanisms of this phenomenon, we assume both the diffusion of copper ions, which is an antimicrobial agent, and specific nanotoxic effects, such as the induction of oxidative stress or damage to the cell membrane,” said Olga Zakharova, an expert from the Department of Functional Nanosystems and High-Temperature Materials at NUST MISIS.
Interestingly, according to the developers, the maximum sterility of plants was observed at the lowest concentration of nanoparticles studied. Scientists suggest that the effect is achieved not through the direct destruction of phytopathogenic microorganisms by nanoparticles, but indirectly through the stimulation of immunity of seedlings.
“Nanoparticles in low concentrations can cause moderate stress in plants, one of the reactions to which is a change in their biochemical status. Compounds such as peroxidases and polyphenols, which are part of the system of non-specific protection of plants against phytopathogenic microorganisms, are beginning to be produced. At the same time, an increase in the concentration of nanoparticles increases the ‘nano’ induced stress, and the overall efficiency of plant adaptation to stress begins to decrease, which is ultimately manifested by a reduced number of viable microclones at the maximum concentration of nanoparticles,” Olga Zakharova added.
According to the researchers, the obtained data confirm the prospect of using copper oxide nanoparticles to optimize the technology of plant cultivation in vitro. The next stage of the project is to accurately identify the mechanisms by which nanoparticles affect plants and phytopathogens.
News
Lipid nanoparticles discovered that can deliver mRNA directly into heart muscle cells
Cardiovascular disease continues to be the leading cause of death worldwide. But advances in heart-failure therapeutics have stalled, largely due to the difficulty of delivering treatments at the cellular level. Now, a UC Berkeley-led [...]
The basic mechanisms of visual attention emerged over 500 million years ago, study suggests
The brain does not need its sophisticated cortex to interpret the visual world. A new study published in PLOS Biology demonstrates that a much older structure, the superior colliculus, contains the necessary circuitry to perform the [...]
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]















