A recent study submitted to the journal Chemosphere focuses on developing an electrochemical sensor for the sensitive detection of indinavir (IDV), an anti-retroviral HIV medication, by combining zinc oxide nanorods and molybdenum disulfide nanosheets on a screen-printed electrode.
What is Indinavir (IDV)?
Indinavir (IDV) is a drug used to treat the human immunodeficiency virus (HIV) that works by inhibiting the infection, acting as a semisynthetic blocker of HIV-1 and HIV-2 proteases.
Due to indinavir’s negative effect on human health, it is critical to developing an effective electrode for detecting IDV in biological settings. High-performance liquid chromatography (HPLC), spectrometry, ion chromatography, and liquid chromatography-tandem spectroscopy are often used to determine indinavir. These approaches analyze IDV in actual specimens based on different sampling and offshore laboratory assessments.
Despite their sensitivity and selectivity, routine laboratory methods are generally inaccessible to communities with the highest need due to the high cost, infrastructural limits, operating capabilities, and a shortage of onsite operability.
Electrochemical Sensors for Detection of IDV
Electrochemical sensors are mobile, flexible, low cost, responsive, and have high specificity. These are essential for enhancing chemo- and bioimaging techniques and provide a perfect foundation for developing enhanced capabilities. As a result, electrochemical-based sensors seem to be a feasible alternative for tracking IDV in a rapid, measurable, low-cost, and large-scale way.
Molybdenum Disulfide (MoS2): An Important Nanomaterial
Over the past couple of decades, nanoscale research has gained widespread recognition as a remarkable technological field that has influenced a wide range of industries. Furthermore, it brings up a plethora of opportunities for developing and implementing innovative designs, products, and systems in a variety of disciplines, including farming, food, transportation, and medical research and development.
Scientists have lately refocused their attention on other graphene-like 2D compounds to overcome the shortage of graphene and broaden the range of its applications. Molybdenum disulfide (MoS2), a multifunctional compound that has sparked a great deal of interest in nanotechnology and optoelectronic devices, is employed as a filler material and a catalyst for the hydrodesulfurization process.
As a conventional 2D layered material, it has excellent thermal resilience and strong electrocatalytic performance, making it appropriate for a wide range of applications such as detectors, electro-catalysts, superconductors, and energy storage systems. Furthermore, MoS2 with an uneven number of layers can produce alternating piezoelectric current and voltage impulses, suggesting that it could be used to operate nanodevices and wearable electronics.
Use of Metal Oxide Materials in Electrochemical Sensors
Due to their exceptional photocatalytic capabilities, metal-oxide compounds have gotten a lot of interest in recent years for use in improved electrochemical sensors. Zinc oxide (ZnO) has sparked substantial attention among metal oxide materials because of its desirable features, which include cheap cost, large availability, and a broad energy bandgap. These nanoparticles are susceptible to many contaminants, including practically all major metal ions and organic compounds.
In this work, ZnO and MoS2 were combined as electrochemical electrodes to create a multifunctional film-modified electrode for the fast monitoring of anti-retroviral (HIV) drugs. The anti-retroviral drug IDV was selected as the model drug for electrochemical sensing. The hydrothermal synthesis technique was used to produce the MoS2-based mixture with metal oxides, which was then used to change the SPE interfaces and build the appropriate electrolytic electrode.
Important Research Findings
The designed electrode was revealed to have a considerable electrocatalytic behavior with a large dynamic linear range. When used for IDV measurement in urine and blood plasma samples, the ultrasensitive electrochemical electrode composed of zinc oxide nanorods and molybdenum disulfide nanosheets achieved good results.
IDV was measured electrochemically using the proposed electrode, which has superior sensitivity, reproducibility, consistency, specificity, and recyclability. The developed biosensor was also used to test IDV levels in biological specimens, and the findings were satisfactory, with a recovery efficiency of more than 98.5 percent. These nanomaterials in electrode settings, according to the results, will be crucial in the future to increase the productivity, sensitivity, and durability of electrochemical electrodes.
Reference
Mehmandoust, M., Karimi, F. and Erk, N., (2022) A zinc oxide nanorods/molybdenum disulfide nanosheets hybrid as a sensitive and reusable electrochemical sensor for determination of anti-retroviral agent indinavir. Chemosphere, p.134430. https://www.sciencedirect.com/science/article/pii/S0045653522009237?via%3Dihub

News
Cancer and AI – Can ChatGPT Be Trusted?
A study published in the Journal of The National Cancer Institute Cancer Spectrum delved into the increasing use of chatbots and artificial intelligence (AI) in providing cancer-related information. The researchers discovered that these digital resources accurately [...]
Breathing New Life: Oxygen Therapy Improves Heart Function in Long COVID Patients
A small trial has found that hyperbaric oxygen therapy (HBOT) may help restore proper heart function in patients with post-COVID syndrome, with participants in the HBOT group experiencing a significant increase in global longitudinal [...]
Wireless Brain-Spine Interface: A Leap Towards Reversing Paralysis
Summary: In a pioneering study, researchers designed a wireless brain-spine interface enabling a paralyzed man to walk naturally again. The ‘digital bridge’ comprises two electronic implants — one on the brain and another on the [...]
New study reveals a gel that promises to wipe out brain cancer for good
An anti-cancer gel promises to wipe out glioblastoma permanently, a feat that's never been accomplished by any drug or surgery. So what makes this gel so special? Scientists at Johns Hopkins University (JHU) have [...]
New production process for therapeutic nanovesicles
Particles known as extracellular vesicles play a vital role in communication between cells and in many cell functions. Released by cells into their environment, these “membrane particles” consist of a cellular membrane carrying a [...]
Could studying African killifish be the secret cure to sarcopenia?
The Australian Regenerative Medicine Institute (ARMI) at Monash University suggests that muscle wasting, known as sarcopenia, may be reversed in late-life The study utilized the African killifish as a model and found that muscles revert [...]
Virtual AI Radiologist: ChatGPT Passes Radiology Board Exam
The most recent version of ChatGPT, an AI chatbot developed for language interpretation and response generation, has successfully passed a radiology board-style exam, demonstrating both its potential and limitations, according to research studies published [...]
Harnessing Energy Waves: Smart Material Prototype Challenges Newton’s Laws of Motion
University of Missouri researchers designed a prototype of a small, lightweight active ‘metamaterial’ that can control the direction and intensity of energy waves. Professor Guoliang Huang of the University of Missouri has developed a [...]
Nanotechnology revolutionizes the way cancer-fighting T cells navigate and combat tumors
Vanderbilt researchers are bolstering the fight against cancer with technology that enhances the effectiveness of T cells that attack tumors. The cutting-edge research was recently published in the journal Science Immunology. Cancers co-opt both [...]
Molecular “Superpower” of Antibiotic-Resistant Bacteria Revealed in New Research
A species of ordinary gut bacteria that we all carry flourishes when the intestinal flora is knocked out by a course of antibiotics. Since the bacteria is naturally resistant to many antibiotics, it causes problems, particularly [...]
Human DNA Is All Over The Planet, And Scientists Are Worried
Every skin flake, hair follicle, eyelash, and spit drop cast from your body contains instructions written in a chemical code, one that is unique to you. According to a new study, technology has advanced [...]
Long COVID: The Invisible Consequence of Socioeconomic Inequality
A recent study conducted by the Universities of Southampton and Oxford reveals a strong correlation between the incidence of long COVID and the level of area-specific deprivation. It found that individuals from the most deprived regions are 46 [...]
Mutation Mystery: Unraveling the Secret Behind COVID-19’s Rapid Spread
Molecular modeling suggests structural consequences of an early protein mutation that promoted viral transmission. RIKEN researchers discovered that an early mutation (D614G) in the SARS-CoV-2 virus may have contributed to its rapid spread by altering the spike [...]
Protein nanoparticle vaccine with adjuvant improves immune response against influenza
A novel type of protein nanoparticle vaccine formulation containing influenza proteins and adjuvant to boost immune responses has provided complete protection against influenza viral challenges, according to a new study published by researchers in [...]
Decoding Long COVID: NIH Study Exposes the Inner Workings of Neurological Symptoms
A NIH study on twelve Long COVID patients found differences in immune cell profiles and autonomic dysfunction, contributing to the understanding of the condition and potentially leading to better diagnoses and new treatments. Twelve [...]
Pancreatic Cancer Vaccine Shows Promise in Small Trial
Using mRNA tailored to each patient’s tumor, the vaccine may have staved off the return of one of the deadliest forms of cancer in half of those who received it. Five years ago, a [...]