Biomedical researchers at Texas A&M University may have discovered a way to stop or even reverse the decline of cellular energy production—a finding that could have revolutionary effects across medicine.
Dr. Akhilesh K. Gaharwar and Ph.D. student John Soukar, along with their fellow researchers from the Department of Biomedical Engineering, have developed a new method to give damaged cells new mitochondria, returning energy output to its previous levels and dramatically increasing cell health.
Mitochondrial decline is linked to aging, heart disease and neurodegenerative disorders. Enhancing the body’s natural ability to replace worn-out mitochondria could fight all of them.
As human cells age or are injured by degenerative disorders like Alzheimer’s or exposure to damaging substances like chemotherapy drugs, they begin to lose their ability to produce energy. The culprit is a decrease in the number of mitochondria—small, organ-like structures within cells responsible for producing most of the energy cells use. From brain cells to muscle cells, as the number of mitochondria drops, so does the health of the cells, until they can no longer carry out their functions.
How nanoflowers and stem cells work
The study, published in Proceedings of the National Academy of Sciences, used a combination of microscopic flower-shaped particles—called nanoflowers—and stem cells. In the presence of these nanoflowers, the stem cells produced twice the normal amount of mitochondria. When these boosted stem cells were placed near damaged or aging cells, they transferred their surplus mitochondria to their injured neighbors.
With new mitochondria, the previously damaged cells regained energy production and function. The rejuvenated cells showed restored energy levels and resisted cell death, even after exposure to damaging agents such as chemotherapy drugs.
“We have trained healthy cells to share their spare batteries with weaker ones,” said Gaharwar, a professor of biomedical engineering. “By increasing the number of mitochondria inside donor cells, we can help aging or damaged cells regain their vitality—without any genetic modification or drugs.”
While cells naturally exchange some mitochondria, the nanoflower-boosted stem cells—nicknamed mitochondrial bio factories—transferred two to four times more mitochondria than untreated ones.
“The several-fold increase in efficiency was more than we could have hoped for,” said Soukar, lead author of the paper. “It’s like giving an old electronic a new battery pack. Instead of tossing them out, we are plugging fully-charged batteries from healthy cells into diseased ones.”
Advantages over existing therapies
Other methods of boosting the number of mitochondria in cells exist, but have significant drawbacks. Medications require frequent, repeated doses because they are composed of smaller molecules that are quickly eliminated from cells. The larger nanoparticles (which are roughly 100 nanometers in diameter) remain in the cell and continue promoting the creation of mitochondria to a greater extent. This means therapies created from the technology could potentially only require monthly administration.
“This is an early but exciting step toward recharging aging tissues using their own biological machinery,” Gaharwar said. “If we can safely boost this natural power-sharing system, it could one day help slow or even reverse some effects of cellular aging.”
The nanoparticles themselves are made of molybdenum disulfide, an inorganic compound capable of holding many possible two-dimensional forms at a microscopic scale. The Gaharwar Lab is one of the few groups to explore molybdenum disulfide’s biomedical applications.
Potential for broad medical applications
The therapeutic potential of stem cells has been a hotbed of cutting-edge research in tissue regeneration. Using nanoflowers to boost stem cells could be the next step in making these cells even better at what they do.
One of the major benefits is the method’s potential versatility. While the approach has yet to be fully explored, it could, in principle, treat loss of function in tissues across the body.
“You could put the cells anywhere in the patient,” Soukar said. “So, for cardiomyopathy, you can treat cardiac cells directly—putting the stem cells directly in or near the heart. If you have muscular dystrophy, you can inject them right into the muscle. It’s pretty promising in terms of being able to be used for a whole wide variety of cases, and this is just kind of the start. We could work on this forever and find new things and new disease treatments every day.”
More information: Nanomaterial-induced mitochondrial biogenesis enhances intercellular mitochondrial transfer efficiency, Proceedings of the National Academy of Sciences (2025). DOI: 10.1073/pnas.2505237122
Journal information: Proceedings of the National Academy of Sciences
Provided by Texas A&M University
News
Nanoflowers rejuvenate old and damaged human cells by replacing their mitochondria
Biomedical researchers at Texas A&M University may have discovered a way to stop or even reverse the decline of cellular energy production—a finding that could have revolutionary effects across medicine. Dr. Akhilesh K. Gaharwar [...]
The Stunning New Push to Protect the Invisible 99% of Life
Scientists worldwide have joined forces to build the first-ever roadmap for conserving Earth’s vast invisible majority—microbes. Their new IUCN Specialist Group reframes conservation by elevating microbial life to the same urgency as plants and [...]
Scientists Find a Way to Help the Brain Clear Alzheimer’s Plaques Naturally
Scientists have discovered that the brain may have a built-in way to fight Alzheimer’s. By activating a protein called Sox9, researchers were able to switch on star-shaped brain cells known as astrocytes and turn them into [...]
Vision can be rebooted in adults with amblyopia, study suggests
Temporarily anesthetizing the retina briefly reverts the activity of the visual system to that observed in early development and enables growth of responses to the amblyopic eye, new research shows. In the common vision [...]
Ultrasound-activated Nanoparticles Kill Liver Cancer and Activate Immune System
A new ultrasound-guided nanotherapy wipes out liver tumors while training the immune system to keep them from coming back. The study, published in Nano Today, introduces a biodegradable nanoparticle system that combines sonodynamic therapy and cell [...]
Magnetic nanoparticles that successfully navigate complex blood vessels may be ready for clinical trials
Every year, 12 million people worldwide suffer a stroke; many die or are permanently impaired. Currently, drugs are administered to dissolve the thrombus that blocks the blood vessel. These drugs spread throughout the entire [...]
Reviving Exhausted T Cells Sparks Powerful Cancer Tumor Elimination
Scientists have discovered how tumors secretly drain the energy from T cells—the immune system’s main cancer fighters—and how blocking that process can bring them back to life. The team found that cancer cells use [...]
Very low LDL-cholesterol correlates to fewer heart problems after stroke
Brigham and Women's Hospital's TIMI Study Group reports that in patients with prior ischemic stroke, very low achieved LDL-cholesterol correlated with fewer major adverse cardiovascular events and fewer recurrent strokes, without an apparent increase [...]
“Great Unified Microscope” Reveals Hidden Micro and Nano Worlds Inside Living Cells
University of Tokyo researchers have created a powerful new microscope that captures both forward- and back-scattered light at once, letting scientists see everything from large cell structures to tiny nanoscale particles in a single shot. Researchers [...]
Breakthrough Alzheimer’s Drug Has a Hidden Problem
Researchers in Japan found that although the Alzheimer’s drug lecanemab successfully removes amyloid plaques from the brain, it does not restore the brain’s waste-clearing system within the first few months of treatment. The study suggests that [...]
Concerning New Research Reveals Colon Cancer Is Skyrocketing in Adults Under 50
Colorectal cancer is striking younger adults at alarming rates, driven by lifestyle and genetic factors. Colorectal cancer (CRC) develops when abnormal cells grow uncontrollably in the colon or rectum, forming tumors that can eventually [...]
Scientists Discover a Natural, Non-Addictive Way To Block Pain That Could Replace Opioids
Scientists have discovered that the body can naturally dull pain through its own localized “benzodiazepine-like” peptides. A groundbreaking study led by a University of Leeds scientist has unveiled new insights into how the body manages pain, [...]
GLP-1 Drugs Like Ozempic Work, but New Research Reveals a Major Catch
Three new Cochrane reviews find evidence that GLP-1 drugs lead to clinically meaningful weight loss, though industry-funded studies raise concerns. Three new reviews from Cochrane have found that GLP-1 medications can lead to significant [...]
How a Palm-Sized Laser Could Change Medicine and Manufacturing
Researchers have developed an innovative and versatile system designed for a new generation of short-pulse lasers. Lasers that produce extremely short bursts of light are known for their remarkable precision, making them indispensable tools [...]
New nanoparticles stimulate the immune system to attack ovarian tumors
Cancer immunotherapy, which uses drugs that stimulate the body’s immune cells to attack tumors, is a promising approach to treating many types of cancer. However, it doesn’t work well for some tumors, including ovarian [...]
New Drug Kills Cancer 20,000x More Effectively With No Detectable Side Effects
By restructuring a common chemotherapy drug, scientists increased its potency by 20,000 times. In a significant step forward for cancer therapy, researchers at Northwestern University have redesigned the molecular structure of a well-known chemotherapy drug, greatly [...]














