The Science
Scientists have developed tiny nanocrystal particles made up of isotopes of the elements lanthanum, vanadium, and oxygen for use in treating cancer. These crystals are smaller than many microbes and can carry isotopes of elements such as actinium and radium. These isotopes undergo radioactive decay, emitting alpha particles (helium nuclei) that destroy cancer cells in the process. The individual isotopes that the nanocrystals carry are too small to see. So, the researchers used advanced computer simulations and data from experiments to understand how the isotopes are arranged inside the nanocrystals. This knowledge will help researchers design more effective radioactive nanocrystals that target and kill tumors.
The Impact
This research could revolutionize cancer therapy by enabling doctors to treat more types of cancers using an approach called targeted alpha therapy. This therapy delivers radioactive substances directly to diseased tissue, where they then decay and break DNA strands in the cancer cells. Targeted therapies have fewer side effects and cause only minimal damage to surrounding healthy cells. Previous studies have found that these therapies can be as much as 50% more effective than traditional chemotherapy, in which patients receive powerful drugs that kill cancer cells. However, alpha therapy only works for types of cancers for which researchers have found effective delivery methods. This study may lead to new imaging methods for cancer detection and diagnosis, as well as new, more effective cancer therapies.
Summary
Inorganic nanocrystals loaded with medical radioisotopes are promising tools for cancer therapy because they offer a new way to deliver cancer-killing radiation to tumors. This study focused on how two radioactive isotopes, actinium and radium, become part of these nanocrystals so they can be delivered to cancer cells. Using a combination of experimental synthesis and molecular dynamics simulations, the research team discovered that the actinium isotopes tend to form tightly packed clusters within the nanocrystals, while radium isotopes distribute more broadly across their surface.
The findings, validated in the laboratory by analyzing their chemical signatures at high resolution, help provide a blueprint for designing nanocrystals optimized for cancer therapy. These new therapies will benefit the treatment of localized tumors, such as breast, brain, and ovarian cancer, but will also have the advantage of being targetable to metastatic cancer anywhere in the body. This type of radiation treatment destroys the targeted cancer cells with minimal damage to healthy organs, resulting in fewer side effects. Understanding these therapies at the atomic level opens new pathways for tailoring them to image and treat more types of tumors.
Funding
This research was supported by the Oak Ridge National Laboratory Directed Research & Development (LDRD) program. The isotopes used in this research were supplied by the Department of Energy (DOE) Isotope Program, managed by the DOE Office of Isotope R&D and Production. The simulations used resources of the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory and the National Energy Research Scientific Computing Center, both of which are DOE Office of Science user facilities.
News
Scientists Develop Spray-On Powder That Instantly Seals Life-Threatening Wounds
KAIST scientists have created a fast-acting, stable powder hemostat that stops bleeding in one second and could significantly improve survival in combat and emergency medicine. Severe blood loss remains the primary cause of death from [...]
Oceans Are Struggling To Absorb Carbon As Microplastics Flood Their Waters
New research points to an unexpected way plastic pollution may be influencing Earth’s climate system. A recent study suggests that microscopic plastic pollution is reducing the ocean’s capacity to take in carbon dioxide, a [...]
Molecular Manufacturing: The Future of Nanomedicine – New book from Frank Boehm
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
New Book! NanoMedical Brain/Cloud Interface – Explorations and Implications
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]
Global Health Care Equivalency in the Age of Nanotechnology, Nanomedicine and Artificial Intelligence
A new book by Frank Boehm, NanoappsMedical Inc. Founder. This groundbreaking volume explores the vision of a Global Health Care Equivalency (GHCE) system powered by artificial intelligence and quantum computing technologies, operating on secure [...]
Miller School Researchers Pioneer Nanovanilloid-Based Brain Cooling for Traumatic Injury
A multidisciplinary team at the University of Miami Miller School of Medicine has developed a breakthrough nanodrug platform that may prove beneficial for rapid, targeted therapeutic hypothermia after traumatic brain injury (TBI). Their work, published in ACS [...]
COVID-19 still claims more than 100,000 US lives each year
Centers for Disease Control and Prevention researchers report national estimates of 43.6 million COVID-19-associated illnesses and 101,300 deaths in the US during October 2022 to September 2023, plus 33.0 million illnesses and 100,800 deaths [...]
Nanomedicine in 2026: Experts Predict the Year Ahead
Progress in nanomedicine is almost as fast as the science is small. Over the last year, we've seen an abundance of headlines covering medical R&D at the nanoscale: polymer-coated nanoparticles targeting ovarian cancer, Albumin recruiting nanoparticles for [...]
Lipid nanoparticles could unlock access for millions of autoimmune patients
Capstan Therapeutics scientists demonstrate that lipid nanoparticles can engineer CAR T cells within the body without laboratory cell manufacturing and ex vivo expansion. The method using targeted lipid nanoparticles (tLNPs) is designed to deliver [...]
The Brain’s Strange Way of Computing Could Explain Consciousness
Consciousness may emerge not from code, but from the way living brains physically compute. Discussions about consciousness often stall between two deeply rooted viewpoints. One is computational functionalism, which holds that cognition can be [...]
First breathing ‘lung-on-chip’ developed using genetically identical cells
Researchers at the Francis Crick Institute and AlveoliX have developed the first human lung-on-chip model using stem cells taken from only one person. These chips simulate breathing motions and lung disease in an individual, [...]
Cell Membranes May Act Like Tiny Power Generators
Living cells may generate electricity through the natural motion of their membranes. These fast electrical signals could play a role in how cells communicate and sense their surroundings. Scientists have proposed a new theoretical [...]
This Viral RNA Structure Could Lead to a Universal Antiviral Drug
Researchers identify a shared RNA-protein interaction that could lead to broad-spectrum antiviral treatments for enteroviruses. A new study from the University of Maryland, Baltimore County (UMBC), published in Nature Communications, explains how enteroviruses begin reproducing [...]
New study suggests a way to rejuvenate the immune system
Stimulating the liver to produce some of the signals of the thymus can reverse age-related declines in T-cell populations and enhance response to vaccination. As people age, their immune system function declines. T cell [...]
Nerve Damage Can Disrupt Immunity Across the Entire Body
A single nerve injury can quietly reshape the immune system across the entire body. Preclinical research from McGill University suggests that nerve injuries may lead to long-lasting changes in the immune system, and these [...]
Fake Science Is Growing Faster Than Legitimate Research, New Study Warns
New research reveals organized networks linking paper mills, intermediaries, and compromised academic journals Organized scientific fraud is becoming increasingly common, ranging from fabricated research to the buying and selling of authorship and citations, according [...]















