Studies at the University of Jyväskylä in Finland show that resin-treated plastics can quickly deactivate viruses, part of a larger effort under the BIOPROT project to develop bio-based antiviral materials for protective gear.
Viruses can remain active on solid surfaces for extended periods, potentially raising the risk of infection. Professor Varpu Marjomäki, a Cell and Molecular Biology expert at the University of Jyväskylä, and her research team are exploring how various surfaces and materials can help reduce the transmission of viral diseases. Specifically, they are examining the survival duration of coronaviruses on different surfaces under varying conditions of humidity and temperature.
"This information would be of direct benefit to both consumers and industry. Antiviral functionality could be used, for example, in restaurants, kindergartens, public transport, and stores, on different surfaces, where viruses can potentially stay infective for a long time and spread easily," says Professor Varpu Marjomäki from the University of Jyväskylä.
Plastic Surfaces With Antiviral Functionality
The researchers of the Nanoscience Center of the University of Jyväskylä studied resin-embedded plastic surfaces against both the seasonal human coronavirus and the SARS-CoV-2 virus.
"In our recent study, we found that the viruses stayed infective for more than two days on plastic surfaces that were not treated at all. In contrast, a plastic surface containing resin showed good antiviral activity within fifteen minutes of contact and excellent efficacy after thirty minutes. Plastic treated with resin is therefore a promising candidate for an antiviral surface," says Marjomäki.
Research Cooperation Project With Premix Oy
The research is part of the BIOPROT project (Development of bio-based and antimicrobial materials and use as protective equipment) funded by Business Finland and has been done in collaboration with the Finnish company Premix Oy.
"The project aims to study existing and develop new antiviral solutions in cooperation with companies such as Premix Oy. This will help to create new products for future pandemics and epidemics," says Marjomäki.
New Bio-Based and Antimicrobial Materials in Protective Equipment
The BIOPROT project involves a total of six universities and research institutes and several companies. The project is coordinated by LUT University and aims to develop new, sustainable and safe material solutions that will be used in the fight against infections, with a particular focus on respiratory and surgical mouth masks and reusable masks for industrial use. It is also hoped that the project will improve the self-sufficiency of products and materials in Europe. At the University of Jyväskylä, under the supervision of Marjomäki, the project is developing bio-based antiviral materials.
"Effective and nature-derived antivirals are available in Finland and could be used for the functionalization of masks and surfaces. Presently, there are only few bio-based functional solutions available, so we have an opportunity to be pioneers in this field," says Marjomäki.
Reference: "Antiviral action of a functionalized plastic surface against human coronaviruses" by Sailee Shroff, Marjo Haapakoski, Kosti Tapio, Mira Laajala, Miika Leppänen, Zlatka Plavec, Antti Haapala, Sarah J. Butcher, Janne A. Ihalainen, J. Jussi Toppari and Varpu Marjomäki, 16 January 2024, Microbiology Spectrum.
DOI: 10.1128/spectrum.03008-23
News
Lipid nanoparticles discovered that can deliver mRNA directly into heart muscle cells
Cardiovascular disease continues to be the leading cause of death worldwide. But advances in heart-failure therapeutics have stalled, largely due to the difficulty of delivering treatments at the cellular level. Now, a UC Berkeley-led [...]
The basic mechanisms of visual attention emerged over 500 million years ago, study suggests
The brain does not need its sophisticated cortex to interpret the visual world. A new study published in PLOS Biology demonstrates that a much older structure, the superior colliculus, contains the necessary circuitry to perform the [...]
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]















