The COVID-19 pandemic highlighted the need for adaptable and scalable vaccine technologies. While mRNA vaccines have improved disease prevention, most are delivered by intramuscular injection, which may not effectively prevent infections that begin at mucosal surfaces, such as the nose and lungs. For respiratory pathogens, this limits protection at the initial site of infection.
Inhalable nanovaccines are being investigated as an alternative approach. These formulations are designed to activate immune responses in the respiratory tract, where pathogens often enter, by delivering antigens to local immune cells through mucosal immunization.
Mechanisms of Delivery: How Nanocarriers Work
Inhalable nanovaccines utilize engineered nanoparticles to deliver antigens or genetic material to immune cells in the respiratory tract. These nanocarriers are designed to overcome biological barriers, such as mucus layers and enzymatic degradation, while targeting antigen-presenting cells (APCs) like dendritic cells and alveolar macrophages to enhance immune activation.
Lipid Nanoparticles (LNPs)
LNPs, widely used in mRNA COVID-19 vaccines, are being adapted for inhalable delivery. Their formulation includes ionizable lipids, cholesterol, and polyethylene glycol (PEG), which protect messenger RNA (mRNA) and facilitate its uptake by cells.
A recent study in the Journal of the American Chemical Society demonstrated that modified LNPs remained stable during nebulization and successfully delivered mRNA to the lungs of mice, leading to uniform protein expression without inducing inflammation.1 An additional modification involving cationic lipids improved targeting of lung tissues.1,2
Polymer-Based and Biomimetic Systems
Polymeric nanoparticles, such as those made from polylactic-co-glycolic acid (PLGA), can be designed for controlled release and enhanced immune response. Researchers have also developed virus-like nanovaccines that mimic the structural features of pathogens.
One biomimetic COVID-19 vaccine combined pulmonary surfactant liposomes with SARS-CoV-2 spike proteins, promoting mucosal immunoglobulin A (IgA) responses in preclinical models. Similarly, mussel-inspired nanoparticles with mucoadhesive properties have shown promise in penetrating lung mucus to deliver anticancer drugs, a strategy adaptable for vaccines.3,4
Hybrid Nanoplatforms
Hybrid platforms combine synthetic and biological components to improve vaccine performance. One approach involved fusing nanovesicles expressing SARS-CoV-2 antigens with adjuvant-loaded liposomes. This formulation activated alveolar macrophages and led to the production of both systemic immunoglobulin G (IgG) and mucosal IgA, suggesting broader protection across different viral variants.5
Key Advantages of Inhalable Nanovaccines
Needle-Free Delivery
Inhalable vaccines avoid the risks associated with injections, including needle-related injuries and infections. They may also be more acceptable to people with needle phobia and are easier to administer in mass vaccination efforts. Convidecia Air, an inhalable COVID-19 vaccine approved in China, demonstrated high user acceptability.5
Inhalable formats could also support self-administration, which is especially relevant in regions with limited healthcare infrastructure.6
Unlike injectable vaccines, which mainly stimulate systemic IgG, inhalable vaccines promote the production of secretory immunoglobulin A (sIgA) at mucosal surfaces. sIgA helps neutralize pathogens before they can infect host cells, reducing transmission. A recent study published in Signal Transduction and Targeted Therapy showed that intranasal RNA vaccines can generate lung-resident memory T cells and sIgA, providing superior protection against respiratory viruses compared to intramuscular shots.2,6
Enhanced Stability and Distribution
Many nanovaccine platforms, including LNPs and polymer-based systems, can be freeze-dried (lyophilized), allowing storage at 4°C or lower without cold-chain dependency. For example, researchers at the University of Wisconsin-Madison developed a lyophilized avian influenza nanovaccine stable for 30 days at -20 °C, indicating its suitability for use in low-resource or remote settings.7
Current Research and Target Diseases
Recent advancements in inhalable nanovaccines are transforming disease prevention and treatment. Current targets include COVID-19, influenza, tuberculosis, and lung cancer.
COVID-19
Inhalable vaccine platforms have been applied extensively in COVID-19 research. Scientists have developed a hybrid nanovaccine that combines receptor-binding domain (RBD)-expressing nanovesicles with monophosphoryl lipid A (MPLA) adjuvant liposomes. This combination has been shown to elicit potent neutralizing antibodies against multiple variants, including Omicron, in preclinical models.
Additionally, a biomimetic vaccine designed to mimic the structure of the virus induced mucosal sIgA responses in mice that exceeded those generated by intramuscular vaccines.3,5
Influenza
Conventional influenza vaccines have limited efficacy due to frequent antigenic drift. Nanoparticle-based strategies aim to improve coverage by delivering conserved antigens or mosaic hemagglutinin (HA) proteins. A study from the University of Wisconsin–Madison developed a mosaic HA nanovaccine capable of eliciting cross-reactive immune responses in poultry against diverse high pathogenic avian influenza (HPAI) strains. This approach may be adaptable to human vaccination.7
Tuberculosis (TB)
TB primarily infects the lungs, making inhalable vaccines an ideal option. Studies have shown that PLGA nanoparticles loaded with Mycobacterium tuberculosis (Mtb) antigens can stimulate lung-resident immune cells, resulting in a greater reduction in bacterial load compared to injectable Bacillus Calmette-Guérin (BCG) vaccines.8
Lung Cancer
In addition to their potential for treating infections, inhalable nanovaccines are also being explored in oncology. Recent studies have shown that intranasal RNA vaccines encapsulated in lipid nanoparticles enhanced with cationic lipid 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) can reprogram cytotoxic T cells to target lung tumors in mice. This approach has doubled the survival rates in mice without causing systemic toxicity.2
Formulation Challenges and Innovations
Researchers are developing new strategies to address technical challenges associated with inhalable nanovaccine delivery, focusing on stability, lung retention, and immune safety.
Overcoming Mucosal Barriers
The lung’s mucus layer and mucociliary clearance rapidly remove inhaled particles. To address this, researchers developed nanoparticles with mucoadhesive surfaces, such as those coated with cysteine-modified mussel proteins, which prolong retention in the lungs.3
Stability During Nebulization
Nebulization can damage nanoparticles, reducing efficacy. A recent study published in the Journal of the American Chemical Society solved this by incorporating zwitterionic polymers into LNPs, which prevented aggregation and maintained mRNA integrity during aerosolization.1
Balancing Immunogenicity and Safety
While adjuvants such as MPLA enhance immune responses, excessive activation can lead to inflammation. Hybrid nanovaccines using pH-sensitive polymers have been developed to provide more controlled adjuvant release, aiming to avoid excessive cytokine responses while preserving efficacy.5
The Future of Inhalable Nanovaccines
Future research will likely see inhalable nanovaccines targeting a broader range of diseases, from RSV to antimicrobial-resistant pathogens. Emerging directions include the use of AI-based models to optimize nanoparticle design, multivalent formulations that deliver several antigens simultaneously, and thermostable formulations in powder form to support use in low-resource or emergency settings.7,8
Inhalable nanovaccines represent an evolving area of vaccine technology. By enabling mucosal immune responses and offering needle-free administration, they may expand access to immunization and improve outcomes for respiratory diseases. Although formulation and distribution challenges remain, continued research and cross-sector collaboration may support the broader implementation of inhalable vaccine platforms as part of future public health strategies.
If you want to learn more about inhalable nanovaccines and related advances in drug delivery, immunology, and nanotechnology, subscribe to our expert-curated Nanomedicine Newsletter.
References and Further Reading
- Jiang, A. Y. et al. (2024). Zwitterionic Polymer-Functionalized Lipid Nanoparticles for the Nebulized Delivery of mRNA. Journal of the American Chemical Society. DOI:10.1021/jacs.4c11347. https://pubs.acs.org/doi/full/10.1021/jacs.4c11347
- Li, H. et al. (2025). Intranasal prime-boost RNA vaccination elicits potent T cell response for lung cancer therapy. Signal Transduction and Targeted Therapy, 10(1), 1-15. DOI:10.1038/s41392-025-02191-1. https://www.nature.com/articles/s41392-025-02191-1
- Zheng, B. et al. (2021). Inhalable nanovaccine with biomimetic coronavirus structure to trigger mucosal immunity of respiratory tract against COVID-19. Chemical Engineering Journal, 418, 129392. DOI:10.1016/j.cej.2021.129392. https://www.sciencedirect.com/science/article/pii/S1385894721009803
- Inhalable therapy uses mussel-inspired nanoparticles to target lung cancer cells. (2025). Phys.org. https://phys.org/news/2025-01-inhalable-therapy-mussel-nanoparticles-lung.html
- Wang, S. et al. (2024). Inhalable hybrid nanovaccines with virus-biomimetic structure boost protective immune responses against SARS-CoV-2 variants. Journal of Nanobiotechnology, 22, 76. DOI:10.1186/s12951-024-02345-3. https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-024-02345-3
- Kiyono, H., & Ernst, P. B. (2025). Nasal vaccines for respiratory infections. Nature, 641(8062), 321-330. DOI:10.1038/s41586-025-08910-6. https://www.nature.com/articles/s41586-025-08910-6
- Sukumaran, P. (2025). Novel NanoVaccines Against Emerging Isolates of Avian Influenza. Nanovaccine Institute, Iowa State University. https://nanovaccine.iastate.edu/novel-nanovaccines-against-emerging-isolates-of-avian-influenza/
- Saleh, M. et al. (2025). Revolutionizing Nanovaccines: A New Era of Immunization. Vaccines, 13(2), 126. DOI:10.3390/vaccines13020126. https://www.mdpi.com/2076-393X/13/2/126
News
Smaller Than a Grain of Salt: Engineers Create the World’s Tiniest Wireless Brain Implant
A salt-grain-sized neural implant can record and transmit brain activity wirelessly for extended periods. Researchers at Cornell University, working with collaborators, have created an extremely small neural implant that can sit on a grain of [...]
Scientists Develop a New Way To See Inside the Human Body Using 3D Color Imaging
A newly developed imaging method blends ultrasound and photoacoustics to capture both tissue structure and blood-vessel function in 3D. By blending two powerful imaging methods, researchers from Caltech and USC have developed a new way to [...]
Brain waves could help paralyzed patients move again
People with spinal cord injuries often lose the ability to move their arms or legs. In many cases, the nerves in the limbs remain healthy, and the brain continues to function normally. The loss of [...]
Scientists Discover a New “Cleanup Hub” Inside the Human Brain
A newly identified lymphatic drainage pathway along the middle meningeal artery reveals how the human brain clears waste. How does the brain clear away waste? This task is handled by the brain’s lymphatic drainage [...]
New Drug Slashes Dangerous Blood Fats by Nearly 40% in First Human Trial
Scientists have found a way to fine-tune a central fat-control pathway in the liver, reducing harmful blood triglycerides while preserving beneficial cholesterol functions. When we eat, the body turns surplus calories into molecules called [...]
A Simple Brain Scan May Help Restore Movement After Paralysis
A brain cap and smart algorithms may one day help paralyzed patients turn thought into movement—no surgery required. People with spinal cord injuries often experience partial or complete loss of movement in their arms [...]
Plant Discovery Could Transform How Medicines Are Made
Scientists have uncovered an unexpected way plants make powerful chemicals, revealing hidden biological connections that could transform how medicines are discovered and produced. Plants produce protective chemicals called alkaloids as part of their natural [...]
Scientists Develop IV Therapy That Repairs the Brain After Stroke
New nanomaterial passes the blood-brain barrier to reduce damaging inflammation after the most common form of stroke. When someone experiences a stroke, doctors must quickly restore blood flow to the brain to prevent death. [...]
Analyzing Darwin’s specimens without opening 200-year-old jars
Scientists have successfully analyzed Charles Darwin's original specimens from his HMS Beagle voyage (1831 to 1836) to the Galapagos Islands. Remarkably, the specimens have been analyzed without opening their 200-year-old preservation jars. Examining 46 [...]
Scientists discover natural ‘brake’ that could stop harmful inflammation
Researchers at University College London (UCL) have uncovered a key mechanism that helps the body switch off inflammation—a breakthrough that could lead to new treatments for chronic diseases affecting millions worldwide. Inflammation is the [...]
A Forgotten Molecule Could Revive Failing Antifungal Drugs and Save Millions of Lives
Scientists have uncovered a way to make existing antifungal drugs work again against deadly, drug-resistant fungi. Fungal infections claim millions of lives worldwide each year, and current medical treatments are failing to keep pace. [...]
Scientists Trap Thyme’s Healing Power in Tiny Capsules
A new micro-encapsulation breakthrough could turn thyme’s powerful health benefits into safer, smarter nanodoses. Thyme extract is often praised for its wide range of health benefits, giving it a reputation as a natural medicinal [...]
Scientists Develop Spray-On Powder That Instantly Seals Life-Threatening Wounds
KAIST scientists have created a fast-acting, stable powder hemostat that stops bleeding in one second and could significantly improve survival in combat and emergency medicine. Severe blood loss remains the primary cause of death from [...]
Oceans Are Struggling To Absorb Carbon As Microplastics Flood Their Waters
New research points to an unexpected way plastic pollution may be influencing Earth’s climate system. A recent study suggests that microscopic plastic pollution is reducing the ocean’s capacity to take in carbon dioxide, a [...]
Molecular Manufacturing: The Future of Nanomedicine – New book from Frank Boehm
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
New Book! NanoMedical Brain/Cloud Interface – Explorations and Implications
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]















