When covid-19 struck Europe in March 2020, hospitals were plunged into a health crisis that was still badly understood. “Doctors really didn’t have a clue how to manage these patients,” says Laure Wynants, an epidemiologist at Maastricht University in the Netherlands, who studies predictive tools.
But there was data coming out of China, which had a four-month head start in the race to beat the pandemic. If machine-learning algorithms could be trained on that data to help doctors understand what they were seeing and make decisions, it just might save lives. “I thought, ‘If there’s any time that AI could prove its usefulness, it’s now,’” says Wynants. “I had my hopes up.”
It never happened—but not for lack of effort. Research teams around the world stepped up to help. The AI community, in particular, rushed to develop software that many believed would allow hospitals to diagnose or triage patients faster, bringing much-needed support to the front lines—in theory.
In the end, many hundreds of predictive tools were developed. None of them made a real difference, and some were potentially harmful.
That’s the damning conclusion of multiple studies published in the last few months. In June, the Turing Institute, the UK’s national center for data science and AI, put out a report summing up discussions at a series of workshops it held in late 2020. The clear consensus was that AI tools had made little, if any, impact in the fight against covid.
Not fit for clinical use
This echoes the results of two major studies that assessed hundreds of predictive tools developed last year. Wynants is lead author of one of them, a review in the British Medical Journal that is still being updated as new tools are released and existing ones tested. She and her colleagues have looked at 232 algorithms for diagnosing patients or predicting how sick those with the disease might get. They found that none of them were fit for clinical use. Just two have been singled out as being promising enough for future testing.
“It’s shocking,” says Wynants. “I went into it with some worries, but this exceeded my fears.”
Wynants’s study is backed up by another large review carried out by Derek Driggs, a machine-learning researcher at the University of Cambridge, and his colleagues, and published in Nature Machine Intelligence. This team zoomed in on deep-learning models for diagnosing covid and predicting patient risk from medical images, such as chest x-rays and chest computer tomography (CT) scans. They looked at 415 published tools and, like Wynants and her colleagues, concluded that none were fit for clinical use.
“This pandemic was a big test for AI and medicine,” says Driggs, who is himself working on a machine-learning tool to help doctors during the pandemic. “It would have gone a long way to getting the public on our side,” he says. “But I don’t think we passed that test.”
Both teams found that researchers repeated the same basic errors in the way they trained or tested their tools. Incorrect assumptions about the data often meant that the trained models did not work as claimed.
Wynants and Driggs still believe AI has the potential to help. But they are concerned that it could be harmful if built in the wrong way because they could miss diagnoses or underestimate risk for vulnerable patients. “There is a lot of hype about machine-learning models and what they can do today,” says Driggs.
Unrealistic expectations encourage the use of these tools before they are ready. Wynants and Driggs both say that a few of the algorithms they looked at have already been used in hospitals, and some are being marketed by private developers. “I fear that they may have harmed patients,” says Wynants.
So what went wrong? And how do we bridge that gap? If there’s an upside, it is that the pandemic has made it clear to many researchers that the way AI tools are built needs to change. “The pandemic has put problems in the spotlight that we’ve been dragging along for some time,” says Wynants.
What went wrong
Many of the problems that were uncovered are linked to the poor quality of the data that researchers used to develop their tools. Information about covid patients, including medical scans, was collected and shared in the middle of a global pandemic, often by the doctors struggling to treat those patients. Researchers wanted to help quickly, and these were the only public data sets available. But this meant that many tools were built using mislabeled data or data from unknown sources.
News
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]















