Nanopore sensing has emerged as a versatile approach to detecting and identifying biomolecules. Within this frame of reference, the fast-responding ionic current is considered an essential criterion for accurately measuring small objects with a nanopore.
An article published in the journal IScience discussed the role of ion diffusion kinetics at the liquid-electrode interface in nanopore sensing. Here, a slow and large reduction in ionic current through a nanopore was observed using platinum (Pt) electrodes in a salt solution, suggesting the significant influence of impedance generated at the metal-liquid interface via Cottrell diffusion.
During the nanoparticle detection, the resistive pulses became weak, followed by a constant increase in the resistance at the partially polarizable electrodes. Moreover, the interfacial impedance coupled with the nanopore chip capacitance degraded the ionic current’s temporal resolution in a time-varying manner. The findings of the present work can help choose the ideal size and material of electrodes for analyzing single particles and molecules by the ionic current.
Nanopore Towards Analyte Detection
Nanopore helps analyze biological samples at a single molecule level. Nanopore sensing is developing into a powerful label-free approach to investigating the features of biomolecules at the single-molecule level.
Here, the translocation of species residing within a nanopore effectively changes the physical and chemical properties of the nanopore interior (conductance or refractive index), detected in a label-free manner.
When a charged molecule is captured within a nanopore, it modulates the ionic current, which is recorded in real-time to reveal the properties of the target molecule. Thus, the nanopore serves as a conductometer that detects a relative change in ion flow at the nanoscale level.
Electrochemistry in a confined space has attracted significant interest because of the intriguing effects of nanoconfinement on mass transport, electrochemical kinetics, and electric field. The nanopore electrochemistry provides a powerful method to address scientific challenges in nanoscience, biochemistry, and energy conversion and storage.
Nanopores providing the electrochemically confined space for the accommodation of single analytes directly convert the single-molecule behaviors into the measurable electrochemical read-outs with a high signal-to-noise ratio.
In the nanopore-based electrochemical reaction, the electric current reveals the dynamics at the electrode-liquid interfaces. Here, the application of voltage results in the over-consumption of reactants, disturbing the local ion distribution and subsequently inducing motions in the bulk that ultimately leads to the relaxation of the acute ion concentration gradient near the electrode surface. The ionic current gradually declines due to the Cottrell diffusion, and its features reveal information about the nature of ions.
Role of Electrodes in Nanopore Sensing
In the present study, the resistive pulse measurements of various polymer nanoparticles were compared using different kinds of electrodes to investigate the relevance of Cottrell diffusion in nanopore sensing. The findings in the present work proved the role of electrode materials in nanopore sensing.
Using a silver (Ag)/ silver chloride (AgCl) electrode system prevented fluctuations in ionic current flow in chloride solution, which otherwise were associated with variation in concentration of reactants and products due to their adsorption or precipitation at the surface of the electrode. The persistent ionic current consequently helped in detecting the particles and molecules.
On the other hand, replacing Ag/AgCl with Pt electrodes resulted in different ionic current characteristics. Here, the open pore current (Ipore) showed a large decrease compared to Ag/AgCl electrodes. Moreover, unlike Ag/AgCl electrodes, the electrochemical reactions in the chloride solution involved no precipitation or adsorption of the reactants, which induced a growing interfacial impedance.
While using Ag resulted in a reduced Ipore and the resistive pulse heights over time, using a titanium (Ti) electrode resolved the issue by maintaining a stable ionic current and uniform height resistive pulses of the polystyrene nanoparticles, demonstrating the superior usefulness of Ti compared to Ag/AgCl for nanopore sensing.
Conclusion and Limitation of the Study
Overall, the results of this study demonstrated the significance of electrode materials in nanopore sensing. It has been demonstrated that Ag/AgCl is especially helpful for obtaining persistent ionic current in a chloride solution for reliable resistive pulse detections of particles and molecules.
Electrochemical reactions at the Pt surfaces, in contrast to those at non-polarizable electrodes, did not result in the precipitation or adsorption of reactants, resulting in an increased interfacial impedance.
It has been shown that this Cottrell diffusion-derived resistance significantly reduced the temporal resolution of ionic current measurements and altered the translocation dynamics of analytes in a time-varying manner, making it impossible to distinguish between analytes like viruses and proteins based on the differences in the ionic signal waveforms.
Although the present work demonstrated the roles of electrode materials, the study was restricted to only nanopores of 300-nanometer diameter. Moreover, since the smaller nanopores possess a larger resistor of resistance at the nanopore (Rpore), the role of Cottrell diffusion changes as the voltage division at the resistor of resistance at the electrode (Rele) becomes smaller.
News
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]















