Researchers from the Netherlands Institute for Neuroscience (NIN) and the Leiden University Medical Center (LUMC) have shown that treatment using gene therapy leads to a faster recovery after nerve damage. By combining a surgical repair procedure with gene therapy, the survival of nerve cells and regeneration of nerve fibers over a long distance was stimulated for the first time. The discovery, published in the journal Brain, is an important step towards the development of a new treatment for people with nerve damage.

During birth or following a traffic accident, nerves in the neck can be torn out of the spinal cord. As a result, these patients lose their arm function, and are unable to perform daily activities such as drinking a cup of coffee. Currently, surgical repair is the only available treatment for patients suffering this kind of nerve damage. “After surgery, nerve fibers have to bridge many centimeters before reaching the muscles and nerve cells from which new fibers need to regenerate are lost in large numbers. Most regenerating nerve fiber do not reach the muscles. The recovery of arm function is therefore disappointing and incomplete,” explains researcher Ruben Eggers of the NIN.

Combination of treatments

By combining neurosurgical repair with gene therapy in rats, many of the dying nerve cells can be rescued and nerve fiber growth in the direction of the muscle can be stimulated.

In this study, the researchers used regulatable gene therapy with a growth factor that could be switched on and off by using a widely used antibiotic. “Because we were able to switch off the gene therapy when the growth factor was no longer needed, the regeneration of new nerve fibers towards the muscles was improved considerably,” says Ruben Eggers.

A stealth gene switch

To overcome the problem of the immune system recognizing and removing the gene switch, the researchers developed a hidden version, a so-called ‘stealth switch’. Professor Joost Verhaagen (NIN) explains: “The stealth gene switch is an important step forward towards the development of gene therapy for nerve damage. The use of a stealth switch improves the gene therapy rendering it even safer.”

Image Credit: NeuroscienceNews.com image is in the public domain   

Thanks to Heinz V. Hoenen.  Follow him on twitter: @HeinzVHoenen

Read more at neurosciencenews.com

News This Week

New Adjustments to Hyperspectral Microscopy of Nanomaterials

Hyperspectral microscopy is an advanced visualization technique that combines hyperspectral imaging with state-of-the-art optics and computer software to enable rapid identification of nanomaterials. Since hyperspectral datacubes are large, their acquisition is complicated and time-consuming. [...]

Through the quantum looking glass

An ultrathin invention could make future computing, sensing and encryption technologies remarkably smaller and more powerful by helping scientists control a strange but useful phenomenon of quantum mechanics, according to new research recently published [...]

A plastic film that can kill viruses using room lights

Graphical abstract. Credit: Journal of Photochemistry and Photobiology B: Biology (2022). DOI: 10.1016/j.jphotobiol.2022.112551 Researchers at Queen's University Belfast have developed a plastic film that can kill viruses that land on its surface with room light. The [...]

Bone formation comes down to the nanowire

Nanotechnology that accelerates the transition of stem cells into bone could advance regenerative medicine. A nanotechnology platform developed by KAUST scientists could lead to new treatments for degenerative bone diseases. The system takes advantage [...]