The blood-brain barrier blocks the entry of antibodies into the brain. This limits the potential use of antibody therapeutics to treat brain diseases, such as brain tumors.
In a new study published in the journal Frontiers in Cell and Developmental Biology, researchers at the University of Alabama at Birmingham report that the site-directed addition of an FDA-approved, biodegradable polymer at the hinge and near hinge regions of the therapeutic antibody trastuzumab effectively facilitated the brain delivery of this human monoclonal IgG1 antibody. Trastuzumab is used to treat breast cancer and several other cancers.
Preliminary work on this novel platform included in vitro and mouse-model experiments. Researchers say the delivery system still must be optimized and tested further, yet note their simple methodology converts antibody therapeutics to a brain-deliverable form that maintains the antibody’s medical functionality.
“The concerns of brain-entry haunt the development of brain-disease-targeting antibody therapeutics, impeding the medical translations of laboratory-generated antibodies to clinical practices,” said Masakazu Kamata, Ph.D., leader of the study and an associate professor in the UAB Department of Microbiology. “In this context, this simple methodology has great potential to serve as the platform to not only repurpose the current antibody therapeutics, but also encourage the design of novel antibodies, for the treatment of brain diseases.”
The biocompatible polymer used was poly 2-methacryloyloxyethyl phosphorylcholine, or PMPC, with chain lengths of 50, 100 or 200 monomers. The researchers had already discovered that this non-immunogenic polymer, which the FDA has approved as a coating material for transplantable devices, could bind to two receptors on brain microvascular endothelial cells composing the blood-brain barrier, and those cells could then move the polymer across the blood-brain barrier by transcytosis. Transcytosis is a specialized transport whereby extracellular cargo is brought inside the cell, shuttled across the cytoplasm to the other side of the cell, and then released.
The UAB researchers were able to cleave four interchain disulfide bonds in the trastuzumab IgG1 hinge and near hinge regions, creating thiol groups. Each thiol group was then conjugated to a chain of the PMPC to create trastuzumab molecules with one of the three chain lengths, which they denoted as Tmab-PMPC50, Tmab-PMPC100 and Tmab-PMPC200.
Each of these modified antibodies still maintained trastuzumab-specific binding to cells expressing the HER2 antigen, the target of trastuzumab. Both the Tmab-PMPC50 and the Tmab-PMPC100 were internalized into HER2-positive cells and promoted antibody-dependent cell death, which is the medical functionality by which trastuzumab kills HER2+ breast cancer cells.
The researchers then showed that PMPC conjugation of trastuzumab enhanced blood-brain barrier penetration through the epithelial cells on the blood-brain barrier via the transcytosis pathway. The translocatable Tmab-PMPC100 was the best at efficient blood-brain barrier penetration while retaining trastuzumab’s epitope recognition, the ability of the antibody to bind to its antigen target.
In a mouse model, both Tmab-PMPC100 and Tmab-PMPC200 were about fivefold better at brain penetration than native trastuzumab. In preliminary in vitro and mouse-model experiments, the polymer-modified trastuzumab did not induce neurotoxicity, did not show adverse effects in the liver, and did not disrupt the integrity of the blood-brain barrier.
“Those findings collectively indicate that PMPC conjugation achieves effective brain delivery of therapeutic antibodies, such as trastuzumab, without induction of adverse effects, at least in the liver, the blood-brain barrier or the brain,” Kamata said.
Others have also investigated ways to get cargo like antibodies across the blood-brain barrier, the researchers noted.
In work that led to the current study, the UAB researchers for the current study had shown they could wrap various macromolecular cargos within PMPC shells, and these nanocapsules demonstrated prolonged blood circulation, reduced immunogenicity and enhanced brain delivery in mice and non-human primates.
Yet this system had drawbacks. The nanocapsules required the addition of targeting ligands to bring them to their disease target and degradable crosslinkers that would allow release of the cargo at that site. Unfortunately, disease-associated microenvironments often lack conditions that can trigger degradation of the crosslinkers.
Other researchers seeking to breach the blood-brain barrier have investigated various ligands other than PMPC to boost transport, such as ligands derived from microbes and toxins, or endogenous proteins like lipoproteins. These generally have had undesirable surface properties—such as being highly immunogenic, highly hydrophobic or charged. PMPC does not exhibit those undesirable traits.
Co-authors with Kamata in the study, “Site-oriented conjugation of poly(2-methacryloyloxyethyl phosphorylcholine) for enhanced brain delivery of antibody,” are Jie Ren, Chloe E. Jepson, Charles J. Kuhlmann, Stella Uloma Azolibe and Madison T. Blucas, UAB Department of Microbiology; Sarah L. Nealy and Eugenia Kharlampieva, UAB Department of Chemistry; Satoru Osuka, UAB Department of Neurosurgery; and Yoshiko Nagaoka-Kamata, UAB Department of Pathology.
More information: Jie Ren et al, Site-oriented conjugation of poly(2-methacryloyloxyethyl phosphorylcholine) for enhanced brain delivery of antibody, Frontiers in Cell and Developmental Biology (2023). DOI: 10.3389/fcell.2023.1214118

News
Long COVID Is Taking A Silent Toll On Mental Health, Here’s What Experts Say
Months after recovering from COVID-19, many people continue to feel unwell. They speak of exhaustion that doesn’t fade, difficulty breathing, or an unsettling mental haze. What’s becoming increasingly clear is that recovery from the [...]
Study Delivers Cancer Drugs Directly to the Tumor Nucleus
A new peptide-based nanotube treatment sneaks chemo into drug-resistant cancer cells, providing a unique workaround to one of oncology’s toughest hurdles. CiQUS researchers have developed a novel molecular strategy that allows a chemotherapy drug to [...]
Scientists Begin $14.2 Million Project To Decode the Body’s “Hidden Sixth Sense”
An NIH-supported initiative seeks to unravel how the nervous system tracks and regulates the body’s internal organs. How does your brain recognize when it’s time to take a breath, when your blood pressure has [...]
Scientists Discover a New Form of Ice That Shouldn’t Exist
Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure. Ice comes in many forms, even when made of nothing but water [...]
Nobel-winning, tiny ‘sponge crystals’ with an astonishing amount of inner space
The 2025 Nobel Prize in chemistry was awarded to Richard Robson, Susumu Kitagawa and Omar Yaghi on Oct. 8, 2025, for the development of metal-organic frameworks, or MOFs, which are tunable crystal structures with extremely [...]
Harnessing Green-Synthesized Nanoparticles for Water Purification
A new review reveals how plant- and microbe-derived nanoparticles can power next-gen water disinfection, delivering cleaner, safer water without the environmental cost of traditional treatments. A recent review published in Nanomaterials highlights the potential of green-synthesized nanomaterials (GSNMs) in [...]
Brainstem damage found to be behind long-lasting effects of severe Covid-19
Damage to the brainstem - the brain's 'control center' - is behind long-lasting physical and psychiatric effects of severe Covid-19 infection, a study suggests. Using ultra-high-resolution scanners that can see the living brain in [...]
CT scan changes over one year predict outcomes in fibrotic lung disease
Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease progression and survival in [...]
AI Spots Hidden Signs of Disease Before Symptoms Appear
Researchers suggest that examining the inner workings of cells more closely could help physicians detect diseases earlier and more accurately match patients with effective therapies. Researchers at McGill University have created an artificial intelligence tool capable of uncovering [...]
Breakthrough Blood Test Detects Head and Neck Cancer up to 10 Years Before Symptoms
Mass General Brigham’s HPV-DeepSeek test enables much earlier cancer detection through a blood sample, creating a new opportunity for screening HPV-related head and neck cancers. Human papillomavirus (HPV) is responsible for about 70% of [...]
Study of 86 chikungunya outbreaks reveals unpredictability in size and severity
The symptoms come on quickly—acute fever, followed by debilitating joint pain that can last for months. Though rarely fatal, the chikungunya virus, a mosquito-borne illness, can be particularly severe for high-risk individuals, including newborns and older [...]
Tiny Fat Messengers May Link Obesity to Alzheimer’s Plaque Buildup
Summary: A groundbreaking study reveals how obesity may drive Alzheimer’s disease through tiny messengers called extracellular vesicles released from fat tissue. These vesicles carry lipids that alter how quickly amyloid-β plaques form, a hallmark of [...]
Ozone exposure weakens lung function and reshapes the oral microbiome
Scientists reveal that short-term ozone inhalation doesn’t just harm the lungs; it reshapes the microbes in your mouth, with men facing the greatest risks. Ozone is a toxic environmental pollutant with wide-ranging effects on [...]
New study reveals molecular basis of Long COVID brain fog
Even though many years have passed since the start of the COVID-19 pandemic, the effects of infection with SARS-CoV-2 are not completely understood. This is especially true for Long COVID, a chronic condition that [...]
Scientists make huge Parkinson’s breakthrough as they discover ‘protein trigger’
Scientists have, for the first time, directly visualised the protein clusters in the brain believed to trigger Parkinson's disease, bringing them one step closer to potential treatments. Parkinson's is a progressive incurable neurological disorder [...]
Alpha amino acids’ stability may explain their role as early life’s protein building blocks
A new study from the Hebrew University of Jerusalem published in the Proceedings of the National Academy of Sciences sheds light on one of life's greatest mysteries: why biology is based on a very specific set [...]