Researchers from Stanford Medicine have discovered that cancer cells-to-be accumulate a series of specific genetic changes in a predictable and sequential way years before they are identifiable as pre-malignancies. Many of these changes affect pathways that control cell division, structure, and internal messaging — leaving the cells poised to go bad long before any visible signs or symptoms occur.
The study is the first to exhaustively observe the natural evolution of the earliest stages of human cancers, starting with cells that have a single cancer-priming mutation and culminating with a panel of descendants harboring a galaxy of genetic abnormalities.
Identifying the first steps associated with future cancer development could not only facilitate earlier-than-ever diagnosis — when a deadly outcome is but a twinkle in a rogue cell’s eye — but may also highlight novel interventions that could stop the disease in its tracks, the researchers say.
Curtis is the senior author of the research, which was published on May 31 in Nature. The lead authors of the study are former postdoctoral scholar Kasper Karlsson, Ph.D., and visiting graduate student Moritz Przybilla.
Cells of nefarious beginnings
The research builds on previous work in Curtis’s laboratory indicating that some colon cancer cells are seemingly born to be bad — they acquire the ability to metastasize long before the disease is detectable.
“Our studies of established tumors showed us that early genomic alterations seem to dictate what happens later, and that many of these changes seem to happen before tumor formation,” Curtis said. “We wanted to know what happens at the very earliest stages. How does a cancer cell evolve, and is this evolutionary path repeatable? If we start with a given set of conditions, will we get the same result in every case?”
The researchers studied tiny, three-dimensional clumps of human stomach cells called gastric organoids. The cells were obtained from patients undergoing gastric bypass surgery to treat obesity. At the beginning of the study, the researchers nudged the cells toward cancers by disabling the production of a key cancer-associated protein called p53 that regulates when and how often a cell divides. Mutations in p53 are known to be an early event in many human cancers, and they trigger the accumulation of additional genetic changes including mutations and copy number alterations — in which repetitive regions of the genome are lost or gained during cell division.
Then they waited.
Every two weeks, for two years, Karlsson cataloged the genetic changes occurring in the dividing cells. When Karlsson and Przybilla analyzed the data they found that, although changes occurred randomly, those that conferred greater fitness gave their host cells an evolutionary advantage over other cells in the organoid. As the cells continued to divide and the cycle of mutation and competition repeated over many iterations, the researchers saw some common themes.
Predictable pathways
“There are reproducible patterns,” Curtis said. “Certain regions of the genome are consistently lost very early after the initial inactivation of p53. This was repeatedly seen in cells from independent experiments with the same donor and across donors. This indicates that these changes are cell-intrinsic, that they are hardwired into tumor evolution. At the same time, these cells and organoids appear mostly normal under the microscope. They have not yet progressed to a cancer.”
The researchers found that these early changes usually occur in biological pathways that control when and how often a cell divides, that interfere with a cell’s intricate internal signaling network coordinating the thousands of steps necessary to keep it running smoothly, or that control cell structure and polarity — its ability to know what is “up” and “down” and to situate itself with respect to neighboring cells to form a functioning tissue.
The researchers saw similar patterns occur again and again in cells from different donors. Like water flowing downhill into dry creek beds, the cells traced tried-and-true paths, gaining momentum with each new genetic change. Several of these changes mirror mutations previously observed in stomach cancer and in Barrett’s esophagus, a pre-cancerous condition arising from cells that line the colon and stomach.
“These changes occur in a stereotyped manner that suggests constraints in the system,” Curtis said. “There’s a degree of predictability at the genomic level and even more so at the transcriptomic level — in the biological pathways that are affected — that gives insights into how these cancers arise.”
Curtis and her colleagues plan to repeat the study in different cell types and initiate events other than p53 mutation.
“We’re trying to understand exactly what malignant transformation is,” Curtis said. “What does it mean to catch these cells in the act, about to topple over the edge? We’d like to repeat this study with other tissue types and initiating mutations so we can understand the early genetic events that occur in different organs. And we’d like to study the interplay between the host and the environment. Do inflammatory factors play a role in promoting progression? We know that it matters that the cells in these organoids are communicating with each other, and that is important to understanding progression and treatment response.”
Reference: “Deterministic evolution and stringent selection during preneoplasia” by Kasper Karlsson, Moritz J. Przybilla, Eran Kotler, Aziz Khan, Hang Xu, Kremena Karagyozova, Alexandra Sockell, Wing H. Wong, Katherine Liu, Amanda Mah, Yuan-Hung Lo, Bingxin Lu, Kathleen E. Houlahan, Zhicheng Ma, Carlos J. Suarez, Chris P. Barnes, Calvin J. Kuo and Christina Curtis, 31 May 2023, Nature.
DOI: 10.1038/s41586-023-06102-8
Researchers from Karolinska Institutet, the University College London, and the Chan Zuckerberg Biohub also contributed to the study.
The research was supported by the National Institutes of Health (grants DP1-CA238296 and U01-CA217851) and the Swedish Research Council.

News
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]
Instant coffee may damage your eyes, genetic study finds
A new genetic study shows that just one extra cup of instant coffee a day could significantly increase your risk of developing dry AMD, shedding fresh light on how our daily beverage choices may [...]
Nanoneedle patch offers painless alternative to traditional cancer biopsies
A patch containing tens of millions of microscopic nanoneedles could soon replace traditional biopsies, scientists have found. The patch offers a painless and less invasive alternative for millions of patients worldwide who undergo biopsies [...]
Small antibodies provide broad protection against SARS coronaviruses
Scientists have discovered a unique class of small antibodies that are strongly protective against a wide range of SARS coronaviruses, including SARS-CoV-1 and numerous early and recent SARS-CoV-2 variants. The unique antibodies target an [...]
Controlling This One Molecule Could Halt Alzheimer’s in Its Tracks
New research identifies the immune molecule STING as a driver of brain damage in Alzheimer’s. A new approach to Alzheimer’s disease has led to an exciting discovery that could help stop the devastating cognitive decline [...]
Cyborg tadpoles are helping us learn how brain development starts
How does our brain, which is capable of generating complex thoughts, actions and even self-reflection, grow out of essentially nothing? An experiment in tadpoles, in which an electronic implant was incorporated into a precursor [...]
Prime Editing: The Next Frontier in Genetic Medicine
By Dr. Chinta SidharthanReviewed by Benedette Cuffari, M.Sc. Discover how prime editing is redefining the future of medicine by offering highly precise, safe, and versatile DNA corrections, bringing hope for more effective treatments for genetic diseases [...]
Can scientists predict life longevity from a drop of blood?
Discover how a new epigenetic clock measures how fast you are really aging from just a drop of blood or saliva. A recent study published in the journal Nature Aging constructed an intrinsic capacity (IC) clock [...]
What is different about the NB.1.8.1 Covid variant?
For many of us, Covid-19 feels like a chapter we’ve closed – along with the days of PCR tests, mask mandates and daily case updates. But while life may feel back to normal, the [...]
Scientists discover single cell creatures can learn new behaviours
It was previously thought that learning behaviours only applied to animals with complex brain and nervous systems, but a new study has proven that this may also occur in individual cells. As a result, this new evidence may change how [...]
Virus which ’causes multiple organ failure’ found at popular Spanish holiday destination
British tourists planning trips to Spain have been warned after a deadly virus that can cause multiple organ failure has been detected in the country. The Foreign Office issued the alert on its dedicated website Travel [...]
Urgent health warning as dangerous new Covid virus from China triggers US outbreak
A dangerous new Covid variant from China is surging in California, health officials warn. The California Department of Public Health warned this week the highly contagious NB.1.8.1 strain has been detected in the state, making it the [...]