Depositing nanoparticles using the NL50 is now simpler than ever with the pre-loaded optimized recipes for a variety of frequently used materials, including Au, Ag, Pt and Cu.
These optimized recipes generate high-quality nano-coatings with premium deposition rates for each material. Moreover, the NL50 also enables the user to vary the size distribution of the deposited nanoparticles by changing two simple parameters – the argon gas flow and the magnetron current (power).
Both the argon gas flow and the magnetron current influence the thermodynamics within the vacuum chamber. Modifying these parameters can either encourage or hinder nanoparticle growth, thus changing the range of nanoparticle sizes produced.
Figure 1. General trend for nanoparticle size with increasing magnetron power or gas flow. Image Credit: Nikalyte Ltd
The Effect of Magnetron Current (Power)
When increasing the magnetron current, the magnetron power also rises, which in turn sputters more material from the target. This subsequent increase in the material made available will generally increase the number of nanoparticles generated (increase the deposition rate) as well as enhancing the size of the nanoparticles produced.
The Effect of Changing the Ar Gas Flow
The effect of modifying the Ar gas flow is a bit more complicated. A rise in the flow of argon will increase the amount of sputtered material ready to form nanoparticles.
However, as the gas flow and pressure rise, the argon ions progressively cool (thermalize) the nanoparticles through inelastic collisions, thus inhibiting nanoparticle growth.
Therefore, it is not unusual to see both an increase and decrease in nanoparticle size with argon gas flow. While the change in behavior is dependent on the material, users are advised to experiment with the process conditions to identify the optimum gas flow and magnetron current for their specific material requirements.
Changing the Nanoparticle Size with the NL50
To adjust the process conditions, the user simply alters the gas flow or current in STEP 4 on the setup Wizard, as displayed in Figure 2. The result of changing the current or the gas flow on the nanoparticle size distribution is also shown for nickel in Figure 2.

Figure 2. User Interface of NL50 indicating current and gas flow control options (top), Effect of Magnetron current on nanoparticle size distribution for Ni (bottom left) and Effect of Argon gas flow on nanoparticle size distribution (bottom right). Image Credit: Nikalyte Ltd
Figure 2 exhibits a change in the nickel nanoparticle distribution to larger sizes with increasing current, as anticipated in Figure 1.
The decline in signal witnessed at 300mA occurs when the plasma temperature produced at high magnetron currents is too great for maximum nickel nanoparticle growth, demonstrating that it may be necessary to make a choice between deposition rate and nanoparticle size.
The result of changing the Ar gas flow for nickel neatly demonstrates the competing processes of the increased formation of sputtered material for nanoparticle creation as Ar ions increasingly suppress nanoparticle growth.
Figure 2 displays the shift to smaller nickel nanoparticle sizes as the Ar gas flow is increased. Initially, the number of nanoparticles rises as the gas flow is increased, demonstrating that additional smaller nanoparticles are produced with the peak deposition rate taking place at 40sccm.
Continuing to increase the gas flow results in a decrease in both the size and number of nanoparticles as thermalization of the nanoparticles becomes more dominant.
News
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]
Nanoplastics with environmental coatings can sneak past the skin’s defenses
Plastic is ubiquitous in the modern world, and it's notorious for taking a long time to completely break down in the environment - if it ever does. But even without breaking down completely, plastic [...]
Chernobyl scientists discover black fungus feeding on deadly radiation
It looks pretty sinister, but it might actually be incredibly helpful When reactor number four in Chernobyl exploded, it triggered the worst nuclear disaster in history, one which the surrounding area still has not [...]
Long COVID Is Taking A Silent Toll On Mental Health, Here’s What Experts Say
Months after recovering from COVID-19, many people continue to feel unwell. They speak of exhaustion that doesn’t fade, difficulty breathing, or an unsettling mental haze. What’s becoming increasingly clear is that recovery from the [...]
Study Delivers Cancer Drugs Directly to the Tumor Nucleus
A new peptide-based nanotube treatment sneaks chemo into drug-resistant cancer cells, providing a unique workaround to one of oncology’s toughest hurdles. CiQUS researchers have developed a novel molecular strategy that allows a chemotherapy drug to [...]
Scientists Begin $14.2 Million Project To Decode the Body’s “Hidden Sixth Sense”
An NIH-supported initiative seeks to unravel how the nervous system tracks and regulates the body’s internal organs. How does your brain recognize when it’s time to take a breath, when your blood pressure has [...]
Scientists Discover a New Form of Ice That Shouldn’t Exist
Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure. Ice comes in many forms, even when made of nothing but water [...]
Nobel-winning, tiny ‘sponge crystals’ with an astonishing amount of inner space
The 2025 Nobel Prize in chemistry was awarded to Richard Robson, Susumu Kitagawa and Omar Yaghi on Oct. 8, 2025, for the development of metal-organic frameworks, or MOFs, which are tunable crystal structures with extremely [...]
Harnessing Green-Synthesized Nanoparticles for Water Purification
A new review reveals how plant- and microbe-derived nanoparticles can power next-gen water disinfection, delivering cleaner, safer water without the environmental cost of traditional treatments. A recent review published in Nanomaterials highlights the potential of green-synthesized nanomaterials (GSNMs) in [...]
Brainstem damage found to be behind long-lasting effects of severe Covid-19
Damage to the brainstem - the brain's 'control center' - is behind long-lasting physical and psychiatric effects of severe Covid-19 infection, a study suggests. Using ultra-high-resolution scanners that can see the living brain in [...]
CT scan changes over one year predict outcomes in fibrotic lung disease
Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease progression and survival in [...]
















