Nanoparticles, tiny structures, can be utilized to carry substances to parts of the body — for instance, to provide a chemotherapy drug to a tumor.
Even though such “nanomedicine” showed promise to enhance cancer therapeutics, the survival perks of clinically approved nanomedicines are often modest compared to that of conventional chemotherapy.
A new study reported in the Journal of Controlled Release denotes that nanomedicine might offer extra advantages if it is has been administered at lower and more frequent doses — known as metronomic dosing — instead of the standard maximum tolerated dose of present treatments.
Nanomedicine and metronomic therapy have been regarded as two different approaches to treat cancer. Our analysis suggests that these two approaches can be viewed using the same unified framework as strategies to enhance treatment.
Rakesh K. Jain PhD, Study Corresponding Author and Director, E.L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital
Jain is also an Andrew Werk Cook Professor of Radiation Oncology at Harvard Medical School.
Jain describes that metronomic therapy might help normalize the tumor microenvironment. This implies that it helps in rectifying a few of the abnormalities that develop around tumors and safeguarding the tumor and promoting its spread.
For instance, metronomic therapy appears to enhance blood vessel function and immune activation within a tumor while tumors can transmit signals that settle normal blood flow and block immune cell responses (both of which make them hard to treat). New preclinical studies indicate that nanomedicines can result in similar variations in the tumor microenvironment.
In this study, we hypothesized that nanoparticle formulations, given the controlled release of their payload and the long blood circulation time, can trigger the same cascade of activities as metronomic therapy.
Rakesh K. Jain PhD, Study Corresponding Author and Director, E.L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital
With the help of a mathematical framework and experiments performed in mice, the researchers illustrated that both methods can act as “normalization strategies” to impact the tumor microenvironment and enhance cancer treatments.
Furthermore, in mice with triple negative breast cancer or fibrosarcoma, Doxil — a nanomedicine that is approved to treat metastatic breast cancer and comprises of doxorubicin encapsulated in a lipid sphere — administered via a metronomic schedule could overcome tumor resistance that is normally seen when Doxil is provided through a standard dosing schedule.
Also, a metronomic schedule enhanced the efficacy of the combination of Doxil plus a kind of immunotherapy known as an immune checkpoint inhibitor.
Nano-immunotherapy, which combines nanomedicines with immunotherapy, has high potential to improve patient outcomes, and for this reason, understanding the mechanisms of resistance to and development of strategies to enhance nano-immunotherapy in breast and other cancer types is urgently needed. The results of this work could be a basis for the planning of future clinical studies to improve the efficacy of nano-immunotherapy regimens.
Triantafyllos Stylianopoulos PhD, Study Co-Corresponding Author and Director, Cancer Biophysics Laboratory
Triantafyllos Stylianopoulos is also an associate professor at the University of Cyprus.
The outcomes indicate that integrating nanomedicines with metronomic scheduling can result in a strong attack against hard-to-treat tumors. By acting collectively to normalize the tumor microenvironment, these two strategies provide drugs with a better chance of obtaining cancer cells and targeting them in an efficient manner.

News
Why ‘Peniaphobia’ Is Exploding Among Young People (And Why We Should Be Concerned)
An insidious illness is taking hold among a growing proportion of young people. Little known to the general public, peniaphobia—the fear of becoming poor—is gaining ground among teens and young adults. Discover the causes [...]
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]