Nanoparticles, tiny structures, can be utilized to carry substances to parts of the body — for instance, to provide a chemotherapy drug to a tumor.
Even though such “nanomedicine” showed promise to enhance cancer therapeutics, the survival perks of clinically approved nanomedicines are often modest compared to that of conventional chemotherapy.
A new study reported in the Journal of Controlled Release denotes that nanomedicine might offer extra advantages if it is has been administered at lower and more frequent doses — known as metronomic dosing — instead of the standard maximum tolerated dose of present treatments.
Nanomedicine and metronomic therapy have been regarded as two different approaches to treat cancer. Our analysis suggests that these two approaches can be viewed using the same unified framework as strategies to enhance treatment.
Rakesh K. Jain PhD, Study Corresponding Author and Director, E.L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital
Jain is also an Andrew Werk Cook Professor of Radiation Oncology at Harvard Medical School.
Jain describes that metronomic therapy might help normalize the tumor microenvironment. This implies that it helps in rectifying a few of the abnormalities that develop around tumors and safeguarding the tumor and promoting its spread.
For instance, metronomic therapy appears to enhance blood vessel function and immune activation within a tumor while tumors can transmit signals that settle normal blood flow and block immune cell responses (both of which make them hard to treat). New preclinical studies indicate that nanomedicines can result in similar variations in the tumor microenvironment.
In this study, we hypothesized that nanoparticle formulations, given the controlled release of their payload and the long blood circulation time, can trigger the same cascade of activities as metronomic therapy.
Rakesh K. Jain PhD, Study Corresponding Author and Director, E.L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital
With the help of a mathematical framework and experiments performed in mice, the researchers illustrated that both methods can act as “normalization strategies” to impact the tumor microenvironment and enhance cancer treatments.
Furthermore, in mice with triple negative breast cancer or fibrosarcoma, Doxil — a nanomedicine that is approved to treat metastatic breast cancer and comprises of doxorubicin encapsulated in a lipid sphere — administered via a metronomic schedule could overcome tumor resistance that is normally seen when Doxil is provided through a standard dosing schedule.
Also, a metronomic schedule enhanced the efficacy of the combination of Doxil plus a kind of immunotherapy known as an immune checkpoint inhibitor.
Nano-immunotherapy, which combines nanomedicines with immunotherapy, has high potential to improve patient outcomes, and for this reason, understanding the mechanisms of resistance to and development of strategies to enhance nano-immunotherapy in breast and other cancer types is urgently needed. The results of this work could be a basis for the planning of future clinical studies to improve the efficacy of nano-immunotherapy regimens.
Triantafyllos Stylianopoulos PhD, Study Co-Corresponding Author and Director, Cancer Biophysics Laboratory
Triantafyllos Stylianopoulos is also an associate professor at the University of Cyprus.
The outcomes indicate that integrating nanomedicines with metronomic scheduling can result in a strong attack against hard-to-treat tumors. By acting collectively to normalize the tumor microenvironment, these two strategies provide drugs with a better chance of obtaining cancer cells and targeting them in an efficient manner.

News
Can our mitochondria help to beat long Covid?
At Cambridge University’s MRC Mitochondrial Biology Unit, Michal Minczuk is one of a growing number of scientists around the world aiming to find new ways of improving mitochondrial health. This line of research could help [...]
Lipid nanoparticles carry gene-editing cancer drugs past tumor defenses
As they grow, solid tumors surround themselves with a thick, hard-to-penetrate wall of molecular defenses. Getting drugs past that barricade is notoriously difficult. Now, scientists at UT Southwestern have developed nanoparticles that can break [...]
Graphene Nanosensor Detects Biomarkers Through Tears
In an article recently published in the journal Talanta, researchers demonstrated a new approach to enable the specific detection of biomarkers in human tear by employing an aptamer-based graphene affinity nanosensor. The ability to detect [...]
How Nanotechnology Can Make a Splash in Aquaculture
Selenium (Se) is an essential element found in aquatic feeds that promotes the proper development, wellbeing, and fitness of marine animals. Selenium can be transformed into nanomaterials that are more easily accessible, absorbed, and consumed by [...]
Super-Resolution Imaging Method For Multiple Fluorescence Microscopy Applications
In an article recently published in the journal Nanotechnology, researchers employed a single particle imaging method for fluorescence excitation with moderate intensity to achieve spatial resolution. Here, the semiconductor nanocrystals were accessed, whose emission lifetimes [...]
Trials to begin on new SA COVID-19 vaccine
A new COVID-19 vaccine developed in South Australia and administered with a needle-free device is to begin human trials. Designed by University of Adelaide researchers the DNA vaccine also targets the Omicron variant of [...]
Towards Carbon Clean Manufacturing with Eco-Friendly Nano-Lubricants
Grinding is an essential manufacturing process, yet the heat due to friction associated with the process causes damage to the part being processed. Lubrication is used to reduce friction; however, traditional petroleum-based lubricants can [...]
Researchers develop hybrid sensor that could help diagnose cancer
A team of researchers from HSE University, Skoltech, MPGU, and MISIS have developed a nanophotonic-microfluidic sensor whose potential applications include cancer detection, monitoring and treatment response assessment. Today, the device can identify gases and [...]
Scientists Develop ‘Nanomachines’ That Can Penetrate And Kill Cancer Cells
Researchers have made a scientific breakthrough with the development of ‘nanomachines’ that can kill cancerous cells. The research team headed by Dr Youngdo Jeong from the Center for Advanced Biomolecular Recognition at the Korea Institute of Science and Technology (KIST) has engineered [...]
Green Method to Make Nanoparticles and Ultrafine Powder
A novel freeze-dissolving approach has been devised that offers greater efficiency and sustainability compared to the classic freeze-drying process to make superfine powder or nanoparticles. In the research published in the journal ACS Sustainable Chemistry & Engineering, sphere-shaped [...]
Participants wanted for study on the regulation of what future AI-driven nanomedicines should look like
Would you like to help in some research on the regulation of what future AI-driven nanomedicines should look like? If so, researchers at the University of Bristol are looking for volunteers to discuss ethical [...]
Could gold nanoparticles help treat cancer?
Gold nanoparticles are minuscule particles made of gold. From drug and gene delivery to photothermal and photodynamic therapies to screening and diagnostic tests to radiation therapy, X-ray imaging and CT scans, these small particles [...]
Carbon Dots Target Nucleolus and Monitor in Real-Time
In an article recently published in the journal Applied Surface Science, the researchers synthesized green fluorescent carbon dots (G-CDs) from 3,5-diaminobenzoic acid and citric acid. The as-prepared G-CDs were used to target the nucleolus and [...]
Green Nanoformulation for Anti-Cancer and Antibacterial Functions
Doxorubicin (DOX) is a powerful anti-cancer medication, and efforts have been made to design nanostructures for delivering it to cancerous cells. The nanostructures increase the cytotoxic effects of DOX on cancerous cells, while reducing the negative effects [...]
New drug delivery system releases therapeutic cargo only when bacteria are present
A team of Brown University researchers has developed a new responsive material that is able to release encapsulated cargo only when pathogenic bacteria are present. The material could be used to make wound dressings [...]
Hairy Cell Leukemia Complicated by Severe COVID-19: A Case Study
Novel three-drug regimen used to manage life-threatening developments. In April 2021, a 42-year-old man reached out to Brian Hill, MD, PhD, for a second opinion after being diagnosed with hairy cell leukemia following a bone [...]