Work could lead to the discovery of new therapeutic targets.
For the first time, researchers have identified “molecular markers” linked to degeneration—detectable changes in cells and their gene-regulating networks—that are common across several types of dementia affecting different brain regions. Significantly, the UCLA-led study, published in the journal Cell, also discovered markers unique to specific forms of dementia. These combined findings could represent a major shift in the search for causes, treatments, and cures for these conditions.
“This work provides new insight into the mechanisms of neurodegeneration and identifies new candidate pathways for the development of therapeutics,” said senior and corresponding author Daniel Geschwind, MD, PhD, a professor of human genetics, neurology, and psychiatry at the David Geffen School of Medicine at UCLA and director of the Institute for Precision Health at UCLA Health.
Research Approach: Going Beyond Traditional Case-Control Studies
Previous studies have focused on a single disorder at a time. Called case-control studies, they compared “diseased” cells with normal ones and often just focused on one brain region. But in this research, the scientists also looked at molecular changes across three different forms of dementia that can involve “tau pathology,” the accumulation of abnormal tau protein in vulnerable regions that differ across disorders.
They performed single-cell genomic analysis on more than 1 million cells to identify distinct and shared molecular markers in three related conditions: Alzheimer’s disease, frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP). In addition to validating changes previously observed in AD, they identify dozens of cell types whose changes are shared across multiple dementias and several cell types whose changes in disease were specific to a single disorder, many of which had not been previously identified.
The Role of Brain Regions and Cells in Neurodegeneration
“Different conditions have different patterns of degeneration. We reasoned that comparison across cases from different disorders, in addition to the typical case-control comparison, would be useful to identify shared components of neurodegeneration and to understand cell type-specific changes that underlie all these conditions,” Geschwind said, adding that most studies profile only one brain region – typically the frontal lobe.
“In dementia and neurodegenerative disease more generally, specific brain regions and cells are most vulnerable in each disease. This is what leads to the different symptoms and signs across disorders,” Geschwind said. “Since regional vulnerability is a core feature of the disorders, we reasoned that studying more than one region would give new insights, and that was the case. In addition to identifying shared and distinct molecular markers, we showed how genetic risk relates to these disease-specific pathways that are altered in the brain.” Using this study design, the investigators found four genes that marked vulnerable neurons across all three disorders, highlighting pathways that could be used to develop new therapeutic approaches.
First author Jessica Rexach, MD, PhD, an assistant professor in neurology and neurobehavioral genetics at the David Geffen School of Medicine at UCLA, said this work “profoundly shifted” her perspective on the mechanisms underlying disease susceptibility.
“It is remarkable and humbling to have identified several distinct molecular differences that set apart cells from individuals with one form of dementia from those with closely related diseases. Although these disease-specific differences were among the minority of the changes observed in diseased brains, they were strongly linked to heritability. This surprising finding opens new avenues for understanding why and how certain genes influence the risk of developing one brain disease over another closely related condition.”
Combined, Alzheimer’s, FTD, and PSP affect more than 28 million people worldwide. Although Alzheimer’s has been studied extensively, there is no cure, and existing, approved medications only slow disease progression. There are few clinical trials available for FTD and PSP.
New Avenues for Therapeutic Development
“We have created an extensive data resource that paves the way for identifying and exploring new therapeutic candidates for neurodegenerative dementias,” Rexach said. “We have pinpointed specific molecules that can now be advanced as potential novel regulators of disease in experimental systems – importantly, grounded in primary human disease data. Additionally, we’ve uncovered unexpected conceptual phenomena that may explain why certain cells exhibit more resilience or vulnerability to disease, and we’re eager to investigate these findings further.”
The researchers:
- Identified unique changes specific to Alzheimer’s disease and demonstrated that several findings in Alzheimer’s were also observed across the other disorders, identifying targets for therapeutic development.
- Found that “cellular resilience programs” – molecular mechanisms that support cells in response to injury – activated or failed differently, when comparing the same cell types across disorders.
- Were surprised to discover that each of the three disorders had changes in cells of the primary visual cortex – the area of the brain that processes visual information and which was thought to be unaffected by dementia. In PSP, this discovery revealed previously unknown changes in brain cells called astrocytes.
- Identified specific changes in the expression of certain tau-related genes and others in PSP. These appear to correlate with the unique pattern of brain cell degeneration that is observed in PSP.
The authors, who will next begin experiments to validate the causal nature of their findings, anticipate the study will inspire similar cross-disorder research.
“These data show that known risk genes act in specific neuronal and glial states or cell types that differ across related disorders. Moreover, causally associated disease states may be limited to specific cell types and regions,” the Cell article concludes. “This underscores the importance of examining multiple brain regions to understand causal disease pathways at the cellular level, which we show provides a clearer picture of shared and disease-specific aspects of resilience and vulnerability to inform the therapeutic roadmap.”
Reference: “Cross-disorder and disease-specific pathways in dementia revealed by single-cell genomics” by Jessica E. Rexach, Yuyan Cheng, Lawrence Chen, Damon Polioudakis, Li-Chun Lin, Vivianne Mitri, Andrew Elkins, Xia Han, Mai Yamakawa, Anna Yin, Daniela Calini, Riki Kawaguchi, Jing Ou, Jerry Huang, Christopher Williams, John Robinson, Stephanie E. Gaus, Salvatore Spina, Edward B. Lee, Lea T. Grinberg, Harry Vinters, John Q. Trojanowski, William W. Seeley, Dheeraj Malhotra and Daniel H. Geschwind, 11 September 2024, Cell.
DOI: 10.1016/j.cell.2024.08.019
Funding for this work was provided by Roche Pharmaceuticals (D.H.G., D.M.), BrightFocus (D.H.G., J.E.R), Rainwater Charitable Foundation (D.H.G. and W.W.S), NIH grants (K08 NS105916 (J.E.R), R01 AG075802 (J.E.R., L.T.G), 5UG3NS104095 (D.H.G)), and John Douglas French Alzheimer’s Foundation (J.E.R.). The UCSF Neurodegenerative Disease Brain Bank is supported by NIH grants AG023501 and AG019724, the Rainwater Charitable Foundation, and the Bluefield Project to Cure bvFTD. The University of Pennsylvania Center for Neurodegenerative Disease Research is supported by NIH grant P01AG066597, P30AG072979 and U19AG062418.
Disclosures: Geschwind has received research funding from Hoffman-LaRoche for this project.
(D.H.G. has received research funding from Hoffman-LaRoche for this project. D.C. is a full-time employee of F. Hoffmann-La Roche, Basel, Switzerland. During the study period, D.M. was a full-time employee of F. Hoffmann-La Roche, Basel, Switzerland, and is currently a full-time employee of Biogen, Cambridge, MA, USA.)

News
By working together, cells can extend their senses beyond their direct environment
The story of the princess and the pea evokes an image of a highly sensitive young royal woman so refined, she can sense a pea under a stack of mattresses. When it comes to [...]
Overworked Brain Cells May Hold the Key to Parkinson’s
Scientists at Gladstone Institutes uncovered a surprising reason why dopamine-producing neurons, crucial for smooth body movements, die in Parkinson’s disease. In mice, when these neurons were kept overactive for weeks, they began to falter, [...]
Old tires find new life: Rubber particles strengthen superhydrophobic coatings against corrosion
Development of highly robust superhydrophobic anti-corrosion coating using recycled tire rubber particles. Superhydrophobic materials offer a strategy for developing marine anti-corrosion materials due to their low solid-liquid contact area and low surface energy. However, [...]
This implant could soon allow you to read minds
Mind reading: Long a science fiction fantasy, today an increasingly concrete scientific goal. Researchers at Stanford University have succeeded in decoding internal language in real time thanks to a brain implant and artificial intelligence. [...]
A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells
Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and [...]
This Common Sleep Aid May Also Protect Your Brain From Alzheimer’s
Lemborexant and similar sleep medications show potential for treating tau-related disorders, including Alzheimer’s disease. New research from Washington University School of Medicine in St. Louis shows that a commonly used sleep medication can restore normal sleep patterns and [...]
Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy
A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]
Nanoparticle-Based Vaccine Shows Promise in Fighting Cancer
In a study published in OncoImmunology, researchers from the German Cancer Research Center and Heidelberg University have created a therapeutic vaccine that mobilizes the immune system to target cancer cells. The researchers demonstrated that virus peptides combined [...]
Quantitative imaging method reveals how cells rapidly sort and transport lipids
Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and [...]
Ancient DNA reveals cause of world’s first recorded pandemic
Scientists have confirmed that the Justinian Plague, the world’s first recorded pandemic, was caused by Yersinia pestis, the same bacterium behind the Black Death. Dating back some 1,500 years and long described in historical texts but [...]
“AI Is Not Intelligent at All” – Expert Warns of Worldwide Threat to Human Dignity
Opaque AI systems risk undermining human rights and dignity. Global cooperation is needed to ensure protection. The rise of artificial intelligence (AI) has changed how people interact, but it also poses a global risk to human [...]
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]
Long COVID Symptoms Are Closer To A Stroke Or Parkinson’s Disease Than Fatigue
When most people get sick with COVID-19 today, they think of it as a brief illness, similar to a cold. However, for a large number of people, the illness doesn't end there. The World [...]
The world’s first AI Hospital, developed in China is transforming healthcare
Artificial Intelligence and its developments have had a revolutionary impact on society, and healthcare is not an exception. China has made massive strides in AI integrated healthcare, and continues to do so as AI [...]
Scientists Rewire Immune Cells To Supercharge Cancer-Fighting Power
Blocking a single protein boosts T cell metabolism and tumor-fighting strength. The discovery could lead to next-generation cancer immunotherapies. Scientists have identified a strategy to greatly enhance the cancer-fighting abilities of the immune system’s [...]