The bacterial strain Xanthomonas oryzae pv.oryzae (Xoo), which causes bacterial leaf blight (BLB) infection, significantly impacts rice yield. Nano-enabled techniques have lately gained popularity as a long-term framework for improving crop nutrition and inhibiting plant diseases.
The production and characterization of bioengineered chitosan iron nanocomposites (BNCs) as an antibacterial agent for treating bacterial leaf blight infection in rice crops is the topic of a new study published in the journal Nano Today.
Microbial Infections: A Significant Threat to Rice Crops
Rice is an essential food crop on a global scale. The worldwide population is expected to grow from 7 to 9 billion by 2050, emphasizing the need to increase rice output to ensure global food sustainability.
Rice yields, however, are challenged by a variety of biotic stressors, including microbial diseases, predatory insects, and weeds. The pathogen Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) illness and is one of the most damaging infections restricting rice output in South Asian nations.
Traditional BLB control solutions include antibiotics and chemical-based medicines, which are costly, detrimental to public health, environmentally destructive, and may lead to pathogen resilience. Furthermore, generating BLB-resistant rice genotypes via traditional breeding or genetic modification is difficult and time-consuming.
As a result, novel BLB disease management techniques are urgently needed to boost rice yield and reduce food insecurity.
Nano-Enabled Agrochemicals for Plant Disease Management
According to several studies, nanocomposites improve plant disease resistance by enhancing plant development, physiological responses, photosynthetic efficiency, nutritional content, and hormone composition. The controlled application of nanoscale micronutrients can increase agricultural productivity by modifying plant health and providing pathogens management.
Many researchers have recently concentrated on adding nanoparticles into biopolymer matrices to create nanocomposites with novel characteristics that can be modified to regulate analyte release.
Novel Bioengineered Chitosan Iron Nanocomposites (BNCs)
Chitosan is a biopolymer with distinct qualities such as nontoxicity, good biocompatibility, immunogenicity, and antibacterial capabilities. Chitosan can directly enhance plant development via antibacterial action and systemic resistance through the octadecanoid channel.
Furthermore, chitosan can be employed as a supporting matrix for metallic nanocomposites, resulting in better physicochemical durability, targeted micronutrient distribution, cytocompatibility, and good antimicrobial activities.
Although the production of chitosan-based engineered nanomaterials (ENMs) has been studied for a variety of applications, the current study introduces a green manufacturing process for the production of bioengineered chitosan iron nanocomposites (BNCs) utilizing the bacterial strain Bacillus aryabhattai RNT7.
Furthermore, this is the first description of in vitro and in vivo analysis of bio-engineered nanocomposites’ bactericidal effectiveness against Xoo. A high-throughput amplicon sequencing technique was utilized in the research to examine the influence of bio-engineered nanocomposites on the endophytic microbial content of healthy and damaged rice plants.
Key Developments of the Study
The findings show that foliar treatment of bio-engineered nanocomposites significantly suppresses BLB illness via various processes, including control of cellular functions, modulation of nutrient uptake, and activation of defense-related genes.
The ultrastructure analysis revealed that bio-engineered nanocomposites greatly reduce BLB-induced stress by limiting the growth of the Xoo infection. The transcription of pathogenesis-related genes was elevated in Xoo-infected rice crops after BNCs administration, demonstrating the beneficial effect of bio-engineered nanocomposites on rice crops.
The high-throughput sequencing results showed that exposing rice plants to bio-engineered nanocomposites greatly decreases the frequency of the Xoo infection. A favorable endophytic bacterial community composition was also maintained in the rice crops.
Future Outlook
Investigating the basic processes of BNC-mediated plant microbiological community management is an intriguing future problem that will contribute to our knowledge of appropriate strategies for developing desired bacterial communities while hindering the impact of plant pathogens.
The current findings show that foliar spraying of bio-engineered nanocomposites has promising results as a new technique for BLB disease control. This study also provides a molecular framework for assessing the influence of bio-engineered nanocomposites on rice endophytic microbial populations as part of green nano-enabled agriculture
News
Nerve Damage Can Disrupt Immunity Across the Entire Body
A single nerve injury can quietly reshape the immune system across the entire body. Preclinical research from McGill University suggests that nerve injuries may lead to long-lasting changes in the immune system, and these [...]
Fake Science Is Growing Faster Than Legitimate Research, New Study Warns
New research reveals organized networks linking paper mills, intermediaries, and compromised academic journals Organized scientific fraud is becoming increasingly common, ranging from fabricated research to the buying and selling of authorship and citations, according [...]
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]















