Biorealistic organic electrochemical neurons enabled by ion-tunable antiambipolarity in mixed ion-electron conducting polymers.
Work to develop increasingly functional artificial nerve cells continues at the Laboratory for Organic Electronics, LOE. In 2022, a team of scientists led by associate professor Simone Fabiano demonstrated how an artificial organic neuron could be integrated into a living carnivorous plant to control the opening and closing of its maw. This synthetic nerve cell met 2 of the 20 characteristics that differentiate it from a biological nerve cell.
In their latest study, published today (January 12) in the journal Nature Materials, the same researchers at LiU have developed a new artificial nerve cell called “conductance-based organic electrochemical neuron” or c-OECN, which closely mimics 15 out of the 20 neural features that characterize biological nerve cells, making its functioning much more similar to natural nerve cells.
In 2018, this research group at Linköping University was one of the first to develop organic electrochemical transistors based on n-type conducting polymers, which are materials that can conduct negative charges. This made it possible to build printable complementary organic electrochemical circuits. Since then, the group has been working to optimize these transistors so that they can be printed in a printing press on a thin plastic foil. As a result, it is now possible to print thousands of transistors on a flexible substrate and use them to develop artificial nerve cells.
Artificial neurons developed at Linköping University. Credit: Thor Balkhed
In the newly developed artificial neuron, ions are used to control the flow of electronic current through an n-type conducting polymer, leading to spikes in the device’s voltage. This process is similar to that which occurs in biological nerve cells. The unique material in the artificial nerve cell also allows the current to be increased and decreased in an almost perfect bell-shaped curve that resembles the activation and inactivation of sodium ion channels found in biology.
“Several other polymers show this behavior, but only rigid polymers are resilient to disorder, enabling stable device operation,” says Simone Fabiano.
In experiments that were carried out in collaboration with Karolinska Institute (KI), the new c-OECN neurons were connected to the vagus nerve of mice. The results show that the artificial neuron could stimulate the mice’s nerves, causing a 4.5% change in their heart rate.
The fact that the artificial neuron can stimulate the vagus nerve itself could, in the long run, pave the way for essential applications in various forms of medical treatment. In general, organic semiconductors have the advantage of being biocompatible, soft, and malleable, while the vagus nerve plays a key role, for example, in the body’s immune system and metabolism.
The next step for the researchers will be to reduce the energy consumption of the artificial neurons, which is still much higher than that of human nerve cells. Much work remains to be done to replicate nature artificially.
“There is much we still don’t fully understand about the human brain and nerve cells. In fact, we don’t know how the nerve cell makes use of many of these 15 demonstrated features. Mimicking the nerve cells can enable us to understand the brain better and build circuits capable of performing intelligent tasks. We’ve got a long road ahead, but this study is a good start,” says Padinhare Cholakkal Harikesh, postdoc and main author of the scientific paper.

News
Silver nanoparticles show promise in fighting antibiotic-resistant bacteria
In a new study, scientists with the University of Florida have found that a combination of silver nanoparticles and antibiotics is effective against antibiotic-resistant bacteria. The researchers hope to turn this discovery into viable [...]
Combating severe cancer with a new drug delivery system
Peritoneal cancer is difficult to treat and has a poor survival prognosis. But a new and effective nanomedicine delivery system is offering some hope. The company is called NaDeNo and is well underway with [...]
New Research Shows How Ketamine Acts As “Switch” in the Brain
According to a new study by researchers at Penn Medicine, ketamine, which is well-known as an anesthetic and is becoming increasingly popular as an antidepressant, dramatically reorganizes activity in the brain, almost as if [...]
Supercharged T Cells: A New Way To Kill Pancreatic Cancer With Minimal Side Effects
A new immunotherapy releases cancer-killing cytokines only within the tumor. Researchers at the University of California San Francisco (UCSF) have developed a new T cell-based immunotherapy that selectively targets cancer cells, producing a powerful anti-cancer cytokine [...]
AI has designed bacteria-killing proteins from scratch – and they work
An AI was tasked with creating proteins with anti-microbial properties. Researchers then created a subset of the proteins and found some did the job. An AI has designed anti-microbial proteins that were then tested [...]
Using nanoparticles, researchers can identify and deliver synergistic combinations of cancer drugs
Treating cancer with combinations of drugs can be more effective than using a single drug. However, figuring out the optimal combination of drugs, and making sure that all of the drugs reach the right [...]
Humanity May Reach Singularity Within Just 7 Years, Trend Shows
By one unique metric, we could approach technological singularity by the end of this decade, if not sooner. A translation company developed a metric, Time to Edit (TTE), to calculate the time it takes for professional [...]
HYPER (Highly Interactive Particle Relics) – A New Model for Dark Matter
Phase transition in early universe changes strength of interaction between dark and normal matter. Dark matter remains one of the greatest mysteries of modern physics. It is clear that it must exist, because without [...]
New Nanoparticles Deliver Therapy Brain-Wide and Edit Alzheimer’s Gene
Summary: Researchers have developed a new family of nano-scale capsules capable of carrying CRISPR gene editing tools to different organs of the body before harmlessly dissolving. The capsules were able to enter the brains of [...]
Cancer’s Secret Weapon? Enzyme That Protects Against Viruses May Fuel Tumor Evolution
An enzyme that defends human cells against viruses can help drive cancer evolution towards greater malignancy by causing myriad mutations in cancer cells, according to a study led by investigators at Weill Cornell Medicine. The [...]
Scientists Uncover Japanese Fruit Juice That May Help Prevent Lung Cancer
Using a mouse model, Japanese researchers unleash the likely mechanism of action of Actinidia arguta (sarunashi) juice on lung cancer development. Lung cancer is a leading cause of death in Japan and across the [...]
In-place manufacturing method improves gas sensor capabilities, production time
When used as wearable medical devices, stretchy, flexible gas sensors can identify health conditions or issues by detecting oxygen or carbon dioxide levels in the breath or sweat. They also are useful for monitoring [...]
In the core of the cell: New insights into the utilization of nanotechnology-based drugs
Novel drugs, such as vaccines against covid-19, among others, are based on drug transport using nanoparticles. Whether this drug transport is negatively influenced by an accumulation of blood proteins on the nanoparticle’s surface was [...]
The costly lesson from COVID: why elimination should be the default global strategy for future pandemics
Imagine it is 2030. Doctors in a regional hospital in country X note an expanding cluster of individuals with severe respiratory disease. Rapid whole-genome sequencing identifies the disease-causing agent as a novel coronavirus. Epidemiological [...]
How Artificial Intelligence Found the Words To Kill Cancer Cells
A predictive model has been developed that enables researchers to encode instructions for cells to execute. Scientists at the University of California, San Francisco (UCSF) and IBM Research have created a virtual library of thousands of “command sentences” [...]
Next-generation, light-activated nanotech for antibiotic-resistant superbugs
It's "lights out" for antibiotic-resistant superbugs as next-generation light-activated nanotech proves it can eradicate some of the most notorious and potentially deadly bacteria in the world. Developed by the University of South Australia and [...]