In a recent study published in Scientific Reports, researchers reported that drug adsorption on micro- and nano-plastics (MNPs) has severe consequences.
Introduction
Plastic degradation results in the formation of particles with diverse shapes, sizes, and compositions. Research suggests these micro- and nano-sized fragments, viz., MNPs, are present in the environment and enter the human body, even cells.
MNPs can adsorb different substances and deliver them to living organisms. Endocrine disruptors are among the compounds that enter life forms and trigger toxic effects.
Residual drugs in wastewater could enter the human and animal bodies, causing physiological changes. This is particularly concerning in the case of antimicrobials; bacteria exposed to these compounds may develop resistance.
Further, the abundance of resistance genes has increased due to the continuous anthropogenic use (or misuse) of antimicrobials. Besides, MNPs provide a surface for microbes to colonize, serving as vectors for transmission.
About the study
In the present study, researchers assessed the interactions of tetracycline (TC), a broad-spectrum antibiotic, with nanoplastics and whether its biological activity is altered.
Four types of plastics were selected: polystyrene (PS), polyethylene (PE), nylon 6,6 (N66), and polypropylene (PP); these were henceforth referred to as NPs instead of MNPs because their sizes did not exceed the nanoscale. Two approaches were employed to generate TC-NP complexes through chemical computation.
First, the NP was folded from individual polymer chains in the presence of TC through multiple simulated annealing (SA) setups. In the second approach, the free particle (FP) method, the NP was pre-folded through SA, and TC was placed on its surface in different orientations.
All conformations underwent geometry optimization. Further, semi-empirical quantum chemical calculations were performed, and sorption energies and binding modes were derived from these calculations.
Two molecular dynamics simulations were performed for each NP to analyze the solvation behavior and temperature influence of the TC-NP aggregates.
Finally, the researchers evaluated the effects of plastic particles (PE terephthalate (PET), PS, or PE) on the activity of TC in mouse and human cell lines, in which the expression of a fluorescent reporter protein was regulated by a TC-controlled promoter.
Findings
The FP and SA approaches generated 104 aggregates for each NP. The relative total energies of the structures were variable. FP data scattered less since these conformer aggregates varied exclusively in their surface structure. Scattering was the lowest for PE but the highest for PS and PP.
The refolding of TC-NP complexes in the SA method allowed for adjusting the polymer chains to TC and selecting the best possible conformation to maximize the sum of NP-TC and NP-NP interplay.
The FP method yielded considerably less stable structures compared to the SA approach. Overall, the SA approach performed better than the FP method.
On PE, the less polar side of TC was attached to the NP, and the hydroxyl, amide, and carbonyl groups were pointed toward the aqueous solvent. In contrast, on N66, TC alignment was the opposite, and the polar-polar interactions between TC and N66 were stronger than their solvation.
In the SA method, TC was often inside the NP, buried beneath the polymer chains. Further, molecular dynamics simulations of two TC-NP structures of each plastic in water revealed significant differences in the mobilities of the NP chains.
PS chains were the least mobile, with the largest functional groups attached to their polyolefin backbone that may provide steric hindrance or friction.
Likewise, N66 movement was also hindered due to the strong hydrogen bonds between amide groups. The rearrangement of PP was remarkable, with nearly two times greater deviations than the starting structures, suggesting it could rearrange enough to accommodate TC within.
Further, TC diffused significantly on the top of N66 and PP particles. While TC detached from PS during equilibration, it re-attached over time.
In simulations starting with TC on the surface of NPs, the number of hydrogen bonds was high, with many hydrogen-bond acceptor and donor sites occupied with a water molecule.
In contrast, there were significant differences in simulations that started with TC inside the NPs. PS and N66 retained the drug molecule inside them; as such, the hydrogen bonding sites of TC were inaccessible to water molecules.
Moreover, N66 hydrogen bonding sites can interact with TC; thus, they compete with water for the antibiotic. For PP and PE, the number of hydrogen bonds between TC and water was high, similar to those in simulations with TC on the surface of NPs.
Finally, incubating cells with PS, PE, or PET significantly reduced TC-induced expression of the fluorescent reporter protein in both cell lines.
Conclusions
Taken together, the study investigated the interactions of NPs with TC. Folding the NPs in the presence of TC resulted in high-energy structures, enabling reorientation and adjustment of polymer chains to the drug. The SA method yielded the most stable TC-NP complexes. Moreover, TC was more often situated inside the NPs.
Further, in vitro experiments showed that the effect of TC was significantly reduced in the presence of plastics. Overall, the findings indicate that MNPs pose substantial health risks, as they may alter drug absorption, facilitate drug transport to new locations, and increase local concentrations of the antibiotic, potentially promoting resistance.
- Dick L, Batista PR, Zaby P, et al. (2024) The adsorption of drugs on nanoplastics has severe biological impact. Scientific Reports. doi: 10.1038/s41598-024-75785-4. https://www.nature.com/articles/s41598-024-75785-4

News
Unlocking hidden soil microbes for new antibiotics
Most bacteria cannot be cultured in the lab-and that's been bad news for medicine. Many of our frontline antibiotics originated from microbes, yet as antibiotic resistance spreads and drug pipelines run dry, the soil [...]
By working together, cells can extend their senses beyond their direct environment
The story of the princess and the pea evokes an image of a highly sensitive young royal woman so refined, she can sense a pea under a stack of mattresses. When it comes to [...]
Overworked Brain Cells May Hold the Key to Parkinson’s
Scientists at Gladstone Institutes uncovered a surprising reason why dopamine-producing neurons, crucial for smooth body movements, die in Parkinson’s disease. In mice, when these neurons were kept overactive for weeks, they began to falter, [...]
Old tires find new life: Rubber particles strengthen superhydrophobic coatings against corrosion
Development of highly robust superhydrophobic anti-corrosion coating using recycled tire rubber particles. Superhydrophobic materials offer a strategy for developing marine anti-corrosion materials due to their low solid-liquid contact area and low surface energy. However, [...]
This implant could soon allow you to read minds
Mind reading: Long a science fiction fantasy, today an increasingly concrete scientific goal. Researchers at Stanford University have succeeded in decoding internal language in real time thanks to a brain implant and artificial intelligence. [...]
A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells
Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and [...]
This Common Sleep Aid May Also Protect Your Brain From Alzheimer’s
Lemborexant and similar sleep medications show potential for treating tau-related disorders, including Alzheimer’s disease. New research from Washington University School of Medicine in St. Louis shows that a commonly used sleep medication can restore normal sleep patterns and [...]
Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy
A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]
Nanoparticle-Based Vaccine Shows Promise in Fighting Cancer
In a study published in OncoImmunology, researchers from the German Cancer Research Center and Heidelberg University have created a therapeutic vaccine that mobilizes the immune system to target cancer cells. The researchers demonstrated that virus peptides combined [...]
Quantitative imaging method reveals how cells rapidly sort and transport lipids
Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and [...]
Ancient DNA reveals cause of world’s first recorded pandemic
Scientists have confirmed that the Justinian Plague, the world’s first recorded pandemic, was caused by Yersinia pestis, the same bacterium behind the Black Death. Dating back some 1,500 years and long described in historical texts but [...]
“AI Is Not Intelligent at All” – Expert Warns of Worldwide Threat to Human Dignity
Opaque AI systems risk undermining human rights and dignity. Global cooperation is needed to ensure protection. The rise of artificial intelligence (AI) has changed how people interact, but it also poses a global risk to human [...]
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]
Long COVID Symptoms Are Closer To A Stroke Or Parkinson’s Disease Than Fatigue
When most people get sick with COVID-19 today, they think of it as a brief illness, similar to a cold. However, for a large number of people, the illness doesn't end there. The World [...]
The world’s first AI Hospital, developed in China is transforming healthcare
Artificial Intelligence and its developments have had a revolutionary impact on society, and healthcare is not an exception. China has made massive strides in AI integrated healthcare, and continues to do so as AI [...]