Accelerated climate change is a major and acute threat to life on Earth. Rising temperatures are caused by microbes producing 50% of atmospheric methane which is 30 times more potent than CO2 at trapping heat. These elevated temperatures are also accelerating microbial growth and thus producing more greenhouse gases than can be used by plants. This weakens the Earth’s ability to function as a carbon sink and further raises the global temperature.

The Malvankar lab had previously reported that this protein wire shows the highest conductivity known to date, allowing bacteria to produce the most electric power reported so far, and explaining how these bacteria can survive without oxygen-like membrane-ingestible molecules. To date, no one had discovered how they are made or why they are so conductive.

Using high-resolution cryo-electron microscopy, the researchers were able to see the nanowire’s atomic structure. They discovered that hemes were packed closely to move electrons extremely quickly with great stability. The team also built some nanowires synthetically to explore how bacteria make nanowires on demand.

“It is possible we could use these wires to generate electricity or understand how methane-eating microbes use them to combat climate change,” Malvankar said.

News

Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy

A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]

Nanomotors: Where Are They Now?

First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]