Artificial intelligence can predict on- and off-target activity of CRISPR tools that target RNA instead of DNA, according to new research published in Nature Biotechnology.
CRISPR is a gene editing technology with many uses in biomedicine and beyond, from treating sickle cell anemia to engineering tastier mustard greens. It often works by targeting DNA using an enzyme called Cas9. In recent years, scientists discovered another type of CRISPR that instead targets RNA using an enzyme called Cas13.
RNA-targeting CRISPRs can be used in a wide range of applications, including RNA editing, knocking down RNA to block expression of a particular gene, and high-throughput screening to determine promising drug candidates. Researchers at NYU and the New York Genome Center created a platform for RNA-targeting CRISPR screens using Cas13 to better understand RNA regulation and to identify the function of non-coding RNAs. Because RNA is the main genetic material in viruses including SARS-CoV-2 and flu, RNA-targeting CRISPRs also hold promise for developing new methods to prevent or treat viral infections. Also, in human cells, when a gene is expressed, one of the first steps is the creation of RNA from the DNA in the genome.
A key goal of the study is to maximize the activity of RNA-targeting CRISPRs on the intended target RNA and minimize activity on other RNAs which could have detrimental side effects for the cell. Off-target activity includes both mismatches between the guide and target RNA as well as insertion and deletion mutations.
Earlier studies of RNA-targeting CRISPRs focused only on on-target activity and mismatches; predicting off-target activity, particularly insertion and deletion mutations, has not been well-studied. In human populations, about one in five mutations are insertions or deletions, so these are important types of potential off-targets to consider for CRISPR design.
“Similar to DNA-targeting CRISPRs such as Cas9, we anticipate that RNA-targeting CRISPRs such as Cas13 will have an outsized impact in molecular biology and biomedical applications in the coming years,” said Neville Sanjana, associate professor of biology at NYU, associate professor of neuroscience and physiology at NYU Grossman School of Medicine, a core faculty member at New York Genome Center, and the study’s co-senior author. “Accurate guide prediction and off-target identification will be of immense value for this newly developing field and therapeutics.”
In their study in Nature Biotechnology, Sanjana and his colleagues performed a series of pooled RNA-targeting CRISPR screens in human cells. They measured the activity of 200,000 guide RNAs targeting essential genes in human cells, including both “perfect match” guide RNAs and off-target mismatches, insertions, and deletions.
Sanjana’s lab teamed up with the lab of machine learning expert David Knowles to engineer a deep learning model they named TIGER (Targeted Inhibition of Gene Expression via guide RNA design) that was trained on the data from the CRISPR screens. Comparing the predictions generated by the deep learning model and laboratory tests in human cells, TIGER was able to predict both on-target and off-target activity, outperforming previous models developed for Cas13 on-target guide design and providing the first tool for predicting off-target activity of RNA-targeting CRISPRs.
“Machine learning and deep learning are showing their strength in genomics because they can take advantage of the huge datasets that can now be generated by modern high-throughput experiments. Importantly, we were also able to use ‘interpretable machine learning’ to understand why the model predicts that a specific guide will work well,” said Knowles, assistant professor of computer science and systems biology at Columbia University’s School of Engineering and Applied Science, a core faculty member at New York Genome Center, and the study’s co-senior author.
“Our earlier research demonstrated how to design Cas13 guides that can knock down a particular RNA. With TIGER, we can now design Cas13 guides that strike a balance between on-target knockdown and avoiding off-target activity,” said Hans-Hermann (Harm) Wessels, the study’s co-first author and a senior scientist at the New York Genome Center, who was previously a postdoctoral fellow in Sanjana’s laboratory.
The researchers also demonstrated that TIGER’s off-target predictions can be used to precisely modulate gene dosage—the amount of a particular gene that is expressed—by enabling partial inhibition of gene expression in cells with mismatch guides. This may be useful for diseases in which there are too many copies of a gene, such as Down syndrome, certain forms of schizophrenia, Charcot-Marie-Tooth disease (a hereditary nerve disorder), or in cancers where aberrant gene expression can lead to uncontrolled tumor growth.
“Our deep learning model can tell us not only how to design a guide RNA that knocks down a transcript completely, but can also ‘tune’ it—for instance, having it produce only 70% of the transcript of a specific gene,” said Andrew Stirn, a Ph.D. student at Columbia Engineering and the New York Genome Center, and the study’s co-first author.
By combining artificial intelligence with an RNA-targeting CRISPR screen, the researchers envision that TIGER’s predictions will help avoid undesired off-target CRISPR activity and further spur development of a new generation of RNA-targeting therapies.
“As we collect larger datasets from CRISPR screens, the opportunities to apply sophisticated machine learning models are growingly rapid. We are lucky to have David’s lab next door to ours to facilitate this wonderful, cross-disciplinary collaboration. And, with TIGER, we can predict off-targets and precisely modulate gene dosage which enables many exciting new applications for RNA-targeting CRISPRs for biomedicine,” said Sanjana.
This latest study further advances the broad applicability of RNA-targeting CRISPRs for human genetics and drug discovery, building on the NYU team’s prior work to develop guide RNA design rules, target RNAs in diverse organisms including viruses like SARS-CoV-2, engineer protein and RNA therapeutics, and leverage single-cell biology to reveal synergistic drug combinations for leukemia.
News
The Brain’s Strange Way of Computing Could Explain Consciousness
Consciousness may emerge not from code, but from the way living brains physically compute. Discussions about consciousness often stall between two deeply rooted viewpoints. One is computational functionalism, which holds that cognition can be [...]
First breathing ‘lung-on-chip’ developed using genetically identical cells
Researchers at the Francis Crick Institute and AlveoliX have developed the first human lung-on-chip model using stem cells taken from only one person. These chips simulate breathing motions and lung disease in an individual, [...]
Cell Membranes May Act Like Tiny Power Generators
Living cells may generate electricity through the natural motion of their membranes. These fast electrical signals could play a role in how cells communicate and sense their surroundings. Scientists have proposed a new theoretical [...]
This Viral RNA Structure Could Lead to a Universal Antiviral Drug
Researchers identify a shared RNA-protein interaction that could lead to broad-spectrum antiviral treatments for enteroviruses. A new study from the University of Maryland, Baltimore County (UMBC), published in Nature Communications, explains how enteroviruses begin reproducing [...]
New study suggests a way to rejuvenate the immune system
Stimulating the liver to produce some of the signals of the thymus can reverse age-related declines in T-cell populations and enhance response to vaccination. As people age, their immune system function declines. T cell [...]
Nerve Damage Can Disrupt Immunity Across the Entire Body
A single nerve injury can quietly reshape the immune system across the entire body. Preclinical research from McGill University suggests that nerve injuries may lead to long-lasting changes in the immune system, and these [...]
Fake Science Is Growing Faster Than Legitimate Research, New Study Warns
New research reveals organized networks linking paper mills, intermediaries, and compromised academic journals Organized scientific fraud is becoming increasingly common, ranging from fabricated research to the buying and selling of authorship and citations, according [...]
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]















