At TU Graz, a pioneering research group is leveraging artificial intelligence to drastically enhance the way nanostructures are constructed.
They aim to develop a self-learning AI system that can autonomously position molecules with unprecedented precision, potentially revolutionizing the creation of complex molecular structures and quantum corrals for advanced electronics.
Revolutionizing Nanostructure Construction with AI
The properties of a material are often shaped less by its chemical composition and more by how its molecules are arranged within the atomic lattice or on its surface. Materials scientists harness this principle by positioning individual atoms and molecules on surfaces using high-performance microscopes. However, this process is highly time-consuming, and the resulting nanostructures remain relatively simple.
A research group at TU Graz aims to revolutionize this approach with artificial intelligence. "We want to develop a self-learning AI system that positions individual molecules quickly, specifically and in the right orientation, and all this completely autonomously," says Oliver Hofmann from the Institute of Solid State Physics, who heads the research group. This advancement could enable the construction of highly complex molecular structures, including nanoscale logic circuits.
The research group, called "Molecule Arrangement through Artificial Intelligence," has secured €1.19 million ($1.23 million) in funding from the Austrian Science Fund to turn this vision into reality
Advanced Techniques in Molecular Positioning
The positioning of individual molecules on a material's surface is carried out using a scanning tunneling microscope. The tip of the probe emits an electrical impulse to deposit a molecule it is carrying. "A person needs a few minutes to complete this step for a simple molecule," says Oliver Hofmann. "But in order to build complicated structures with potentially exciting effects, many thousands of complex molecules have to be positioned individually and the result then tested. This of course takes a relatively long time."
AI Integration for Enhanced Precision
However, a scanning tunneling microscope can also be controlled by a computer. Oliver Hofmann's team now wants to use various machine learning methods to get such a computer system to place the molecules in the correct position independently. First, AI methods are used to calculate an optimal plan that describes the most efficient and reliable approach to building the structure. Self-learning AI algorithms then control the probe tip to place the molecules precisely according to the plan.
"Positioning complex molecules at the highest precision is a difficult process, as their alignment is always subject to a certain degree of chance despite the best possible control," explains Hofmann. The researchers will integrate this conditional probability factor into the AI system so that it still acts reliably.
The Future of Quantum Corrals
Using an AI-controlled scanning tunneling microscope that can work around the clock, the researchers ultimately want to build so-called quantum corrals. These are nanostructures in the shape of a gate, which can be used to trap electrons from the material on which they are deposited. The wave-like properties of the electrons then lead to quantum-mechanical interferences that can be utilized for practical applications. Until now, quantum corrals have mainly been built from single atoms.
Oliver Hofmann's team now wants to produce them from complex-shaped molecules: "Our hypothesis is that this will allow us to build much more diverse quantum corrals and thus specifically expand their effects." The researchers want to use these more complex quantum corrals to build logic circuits in order to fundamentally study how they work at the molecular level. Theoretically, such quantum corrals could one day be used to build computer chips.
Collaborative Research and Expertise Synergy
For its five-year program, the research group is pooling expertise from the fields of artificial intelligence, mathematics, physics, and chemistry. Bettina Könighofer from the Institute of Information Security is responsible for the development of the machine learning model. Her team must ensure that the self-learning system does not inadvertently destroy the nanostructures it constructs.
Jussi Behrndt from the Institute of Applied Mathematics will determine the fundamental properties of the structures to be developed on a theoretical basis, while Markus Aichhorn from the Institute of Theoretical Physics will translate these predictions into practical applications. Leonhard Grill from the Institute of Chemistry at the University of Graz is primarily responsible for the real experiments on the scanning tunneling microscope.
Reference: "MAM-STM: A software for autonomous control of single moieties towards specific surface positions" by Bernhard Ramsauer, Johannes J. Cartus and Oliver T. Hofmann, 6 June 2024, Computer Physics Communications.
DOI: 10.1016/j.cpc.2024.109264
News
Nanomedicine in 2026: Experts Predict the Year Ahead
Progress in nanomedicine is almost as fast as the science is small. Over the last year, we've seen an abundance of headlines covering medical R&D at the nanoscale: polymer-coated nanoparticles targeting ovarian cancer, Albumin recruiting nanoparticles for [...]
Lipid nanoparticles could unlock access for millions of autoimmune patients
Capstan Therapeutics scientists demonstrate that lipid nanoparticles can engineer CAR T cells within the body without laboratory cell manufacturing and ex vivo expansion. The method using targeted lipid nanoparticles (tLNPs) is designed to deliver [...]
The Brain’s Strange Way of Computing Could Explain Consciousness
Consciousness may emerge not from code, but from the way living brains physically compute. Discussions about consciousness often stall between two deeply rooted viewpoints. One is computational functionalism, which holds that cognition can be [...]
First breathing ‘lung-on-chip’ developed using genetically identical cells
Researchers at the Francis Crick Institute and AlveoliX have developed the first human lung-on-chip model using stem cells taken from only one person. These chips simulate breathing motions and lung disease in an individual, [...]
Cell Membranes May Act Like Tiny Power Generators
Living cells may generate electricity through the natural motion of their membranes. These fast electrical signals could play a role in how cells communicate and sense their surroundings. Scientists have proposed a new theoretical [...]
This Viral RNA Structure Could Lead to a Universal Antiviral Drug
Researchers identify a shared RNA-protein interaction that could lead to broad-spectrum antiviral treatments for enteroviruses. A new study from the University of Maryland, Baltimore County (UMBC), published in Nature Communications, explains how enteroviruses begin reproducing [...]
New study suggests a way to rejuvenate the immune system
Stimulating the liver to produce some of the signals of the thymus can reverse age-related declines in T-cell populations and enhance response to vaccination. As people age, their immune system function declines. T cell [...]
Nerve Damage Can Disrupt Immunity Across the Entire Body
A single nerve injury can quietly reshape the immune system across the entire body. Preclinical research from McGill University suggests that nerve injuries may lead to long-lasting changes in the immune system, and these [...]
Fake Science Is Growing Faster Than Legitimate Research, New Study Warns
New research reveals organized networks linking paper mills, intermediaries, and compromised academic journals Organized scientific fraud is becoming increasingly common, ranging from fabricated research to the buying and selling of authorship and citations, according [...]
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]















