Microscopically tiny nanomachines which move like submarines with their own propulsion—for example in the human body, where they transport active agents and release them at a target: What sounds like science fiction has, over the past 20 years, become an ever more rapidly growing field of research. However, most of the particles developed so far only function in the laboratory. Propulsion, for example, is a hurdle. Some particles have to be supplied with energy in the form of light, others use chemical propulsions which release toxic substances. Neither of these can be considered for any application in the body. A solution to the problem could be acoustically propelled particles. Johannes Voß and Prof. Raphael Wittkowski from the Institute of Theoretical Physics and the Center for Soft Nanoscience at the University of Münster (Germany) have now found answers to central questions which had previously stood in the way of applying acoustic propulsion. The results have been published in the journal ACS Nano.
Ultrasound is used in acoustically propelled nanomachines as it is quite safe for applications in the body. Lead author Johannes Voß sums up the research carried out so far as follows: “There are many publications describing experiments. However, the particles in these experiments were almost always exposed to a standing ultrasound wave. This does admittedly make the experiments considerably simpler, but at the same time it makes the results less meaningful as regards possible applications—because in that case traveling ultrasound waves would be used.” This is due to the fact that standing waves are produced when waves traveling in opposite directions overlap one another.
What researchers also did not previously take into account is that in applications the particles can move in any direction. Thus, they left aside the question of whether propulsion depends on the orientation of the particles. Instead, they only looked at particles aligned perpendicular to the ultrasound wave. Now, for the first time, the team of researchers in Münster studied the effects of orientation using elaborate computer simulations.
They came to the conclusion that the propulsion of the nanoparticles depends on their orientation. At the same time, the acoustic propulsion mechanism in traveling ultrasound waves functions so well for all orientations of the particles—i.e. not only exactly perpendicular to the ultrasound wave—that these particles really can be used for biomedical applications. Another aspect the Münster physicists examined was the propulsion the particles exhibited when they were exposed to ultrasound coming from all directions (i.e. “isotropic ultrasound”).
A basis for the step towards application
“Our results showed how the particles will behave in applications and that the propulsion has the right properties for the particles to actually be used in these applications,” Johannes Voß concludes. As Raphael Wittkowski adds, “We have revealed important properties of acoustically propelled nanoparticles which had not previously been studied, but which need to be understood to enable the step to be made from basic research to the planned applications involving the particles.”
The two Münster researchers examined conical particles, as they can move fast even at a low intensity of ultrasound—i.e. they have efficient propulsion—and also they can easily be produced in large numbers. The particles are almost one micrometer in size—almost a thousand nanometres. In comparison, a red blood cell has a diameter of around 7.7 micrometers. This means that the nanoparticles could move through the bloodstream without blocking up the finest blood vessels. “The particle size can be selected in line with what is needed in the particular application intended, and the propulsion mechanism also functions in the case of smaller and larger particles,” Johannes Voß explains. “We simulated the particles in water, but the propulsion is also suitable for other fluids and for tissue.”
By means of computer simulations, the team investigated systems and their properties which could not be studied in the many preceding experiments. Looking into the future, Raphael Wittkowski says, “An important step would be for experiment-based research to move on to looking at these systems.”

News
Can our mitochondria help to beat long Covid?
At Cambridge University’s MRC Mitochondrial Biology Unit, Michal Minczuk is one of a growing number of scientists around the world aiming to find new ways of improving mitochondrial health. This line of research could help [...]
Lipid nanoparticles carry gene-editing cancer drugs past tumor defenses
As they grow, solid tumors surround themselves with a thick, hard-to-penetrate wall of molecular defenses. Getting drugs past that barricade is notoriously difficult. Now, scientists at UT Southwestern have developed nanoparticles that can break [...]
Graphene Nanosensor Detects Biomarkers Through Tears
In an article recently published in the journal Talanta, researchers demonstrated a new approach to enable the specific detection of biomarkers in human tear by employing an aptamer-based graphene affinity nanosensor. The ability to detect [...]
How Nanotechnology Can Make a Splash in Aquaculture
Selenium (Se) is an essential element found in aquatic feeds that promotes the proper development, wellbeing, and fitness of marine animals. Selenium can be transformed into nanomaterials that are more easily accessible, absorbed, and consumed by [...]
Super-Resolution Imaging Method For Multiple Fluorescence Microscopy Applications
In an article recently published in the journal Nanotechnology, researchers employed a single particle imaging method for fluorescence excitation with moderate intensity to achieve spatial resolution. Here, the semiconductor nanocrystals were accessed, whose emission lifetimes [...]
Trials to begin on new SA COVID-19 vaccine
A new COVID-19 vaccine developed in South Australia and administered with a needle-free device is to begin human trials. Designed by University of Adelaide researchers the DNA vaccine also targets the Omicron variant of [...]
Towards Carbon Clean Manufacturing with Eco-Friendly Nano-Lubricants
Grinding is an essential manufacturing process, yet the heat due to friction associated with the process causes damage to the part being processed. Lubrication is used to reduce friction; however, traditional petroleum-based lubricants can [...]
Researchers develop hybrid sensor that could help diagnose cancer
A team of researchers from HSE University, Skoltech, MPGU, and MISIS have developed a nanophotonic-microfluidic sensor whose potential applications include cancer detection, monitoring and treatment response assessment. Today, the device can identify gases and [...]
Scientists Develop ‘Nanomachines’ That Can Penetrate And Kill Cancer Cells
Researchers have made a scientific breakthrough with the development of ‘nanomachines’ that can kill cancerous cells. The research team headed by Dr Youngdo Jeong from the Center for Advanced Biomolecular Recognition at the Korea Institute of Science and Technology (KIST) has engineered [...]
Green Method to Make Nanoparticles and Ultrafine Powder
A novel freeze-dissolving approach has been devised that offers greater efficiency and sustainability compared to the classic freeze-drying process to make superfine powder or nanoparticles. In the research published in the journal ACS Sustainable Chemistry & Engineering, sphere-shaped [...]
Participants wanted for study on the regulation of what future AI-driven nanomedicines should look like
Would you like to help in some research on the regulation of what future AI-driven nanomedicines should look like? If so, researchers at the University of Bristol are looking for volunteers to discuss ethical [...]
Could gold nanoparticles help treat cancer?
Gold nanoparticles are minuscule particles made of gold. From drug and gene delivery to photothermal and photodynamic therapies to screening and diagnostic tests to radiation therapy, X-ray imaging and CT scans, these small particles [...]
Carbon Dots Target Nucleolus and Monitor in Real-Time
In an article recently published in the journal Applied Surface Science, the researchers synthesized green fluorescent carbon dots (G-CDs) from 3,5-diaminobenzoic acid and citric acid. The as-prepared G-CDs were used to target the nucleolus and [...]
Green Nanoformulation for Anti-Cancer and Antibacterial Functions
Doxorubicin (DOX) is a powerful anti-cancer medication, and efforts have been made to design nanostructures for delivering it to cancerous cells. The nanostructures increase the cytotoxic effects of DOX on cancerous cells, while reducing the negative effects [...]
New drug delivery system releases therapeutic cargo only when bacteria are present
A team of Brown University researchers has developed a new responsive material that is able to release encapsulated cargo only when pathogenic bacteria are present. The material could be used to make wound dressings [...]
Hairy Cell Leukemia Complicated by Severe COVID-19: A Case Study
Novel three-drug regimen used to manage life-threatening developments. In April 2021, a 42-year-old man reached out to Brian Hill, MD, PhD, for a second opinion after being diagnosed with hairy cell leukemia following a bone [...]