Two teams of scientists from the Technion-Israel Institute of Technology have collaborated to conduct groundbreaking research leading to the development of a new and innovative scientific field: Quantum Metamaterials. The findings are presented in a new joint paper published by the prestigious journal Science (“Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials”).
The study was jointly conducted by Distinguished Professor Mordechai Segev, of the Technion’s Physics Department and Solid State Institute and his team Tomer Stav and Dikla Oren, in collaboration with Prof. Erez Hasman of the Technion’s Faculty of Mechanical Engineering and his team Arkady Faerman, Elhanan Maguid, and Dr. Vladimir Kleiner. Both groups are also affiliated with the Russell Berrie Nanotechnology Institute (RBNI).
The researchers have demonstrated for the first time that it is possible to apply metamaterials to the field of quantum information and computing, thereby paving the way for numerous practical applications including, among others, the development of unbreakable encryptions, as well as opening the door to new possibilities for quantum information systems on a chip.
Metamaterials are artificially fabricated materials, made up of numerous artificial nanoscale structures designed to respond to light in different ways. Metasurfaces are the 2 dimensional version of metamaterials: extremely thin surfaces made up of numerous subwavelength optical nanoantennas, each designed to serve a specific function upon the interaction with light.
While to date, experimentation with metamaterials has widely been limited to manipulations using classical light, the Technion researchers have for the first time shown it is experimentally feasible to use metamaterials as the building blocks for quantum optics and quantum information. More specifically, the researchers have demonstrated the use of metamaterials to generate and manipulate entanglement – which is the most crucial feature of any quantum information scheme.
“What we did in this experiment is to bring the field of metamaterials to the realm of quantum information,” says Dist. Prof. Moti Segev, one of the founders of the Helen Diller Quantum Science, Matter and Engineering Center at the Technion. “With today’s technology, one can design and fabricate materials with electromagnetic properties that are almost arbitrary. For example, one can design and fabricate an invisibility cloak that can conceal little things from radar, or one can create a medium where the light bends backwards. But so far all of this was done with classical light. What we show here is how to harness the superb abilities of artificial nano-designed materials to generate and control quantum light.”
Image Credit: (L-R) Dist. Prof. Mordechai Segev, Tomer Stav, Prof. Erez Hasman, Arkady Faerman, Dr. Vladimir Kleiner, Dikla Oren and Elhanan Maguid
News This Week
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]
New technique overcomes technological barrier in 3D brain imaging
Scientists at the Swiss Light Source SLS have succeeded in mapping a piece of brain tissue in 3D at unprecedented resolution using X-rays, non-destructively. The breakthrough overcomes a long-standing technological barrier that had limited [...]
Scientists Uncover Hidden Blood Pattern in Long COVID
Researchers found persistent microclot and NET structures in Long COVID blood that may explain long-lasting symptoms. Researchers examining Long COVID have identified a structural connection between circulating microclots and neutrophil extracellular traps (NETs). The [...]
This Cellular Trick Helps Cancer Spread, but Could Also Stop It
Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to limit tumor spread. The tale of the princess and the [...]
New mRNA therapy targets drug-resistant pneumonia
Bacteria that multiply on surfaces are a major headache in health care when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found [...]
Current Heart Health Guidelines Are Failing To Catch a Deadly Genetic Killer
New research reveals that standard screening misses most people with a common inherited cholesterol disorder. A Mayo Clinic study reports that current genetic screening guidelines overlook most people who have familial hypercholesterolemia, an inherited disorder that [...]
















Leave A Comment