A new, easily adopted, 3D-printed device will enable scientists to create models of human tissue with even greater control and complexity. An interdisciplinary group of researchers at the University of Washington and UW Medicine led the development of the device.
3D tissue engineering, which recently has undergone other major advances in speed and accuracy, helps biomedical researchers design and test therapies for a range of diseases.
One goal of tissue engineering is to create lab-made environments that recreate the natural habitats of cells.
Suspending cells in a gel between two freestanding posts is one of the current modeling platforms for growing heart, lung, skin and musculoskeletal tissues.
While this approach allows cells to behave as they would inside the body, it has not made it easy to study multiple tissue types together. More precise control over the composition and spatial arrangement of tissues would allow scientists to model complex diseases, such as neuromuscular disorders.
A paper published in Advanced Science details how the new platform lets scientists examine how cells respond to mechanical and physical cues, while creating distinct regions in a suspended tissue. The 3D-printed device is known as STOMP (Suspended Tissue Open Microfluidic Patterning).
Ashleigh Theberge, UW professor of chemistry, and Nate Sniadecki, professor of mechanical engineering and interim codirector of the UW Medicine Institute for Stem Cell and Regenerative Medicine, led the scientific team. The group showed that their device can recreate biological interfaces like bone and ligament, or fibrotic and healthy heart tissue.

The first authors of the paper were Amanda Haack, a student in the School of Medicine’s medical scientist program and postdoctoral fellow in the Theberge Lab, and Lauren Brown, a Ph.D. student in chemistry. UW faculty members Cole DeForest, professor of chemical engineering and bioengineering, and Tracy Popowics, professor of oral biology in the School of Dentistry, are co-authors.
STOMP enhances a tissue-engineering method called casting, which the researchers compared in simple terms to making Jell-O in a dessert mold. In the lab, the gel is a mixture of living and synthetic materials. These are pipetted into a frame rather than poured into a mold. STOMP uses capillary action—think of water flowing up a straw in a drinking glass—to permit scientists to space out different cell types in whatever pattern an experiment requires, like a cook evenly spreading pieces of fruit in Jell-O.
The researchers put STOMP to the test in two experiments: one that compared the contractile dynamics of diseased and healthy engineered heart tissue, and another that models the ligament that connects a tooth to its bone socket.
The STOMP device is about the size of a fingertip. It docks on to a two-post system originally developed by the Sniadecki Lab to measure the contractile force of heart cells. The tiny piece of hardware contains an open microfluidic channel with geometric features to manipulate the spacing and composition of different cell types, and for creating multiple regions within single suspended tissue without the need for additional equipment or capabilities.
Hydrogel technology from the DeForest Research Group souped up STOMP with another design feature: degradable walls. Tissue engineers can break down the sides of the device and leave the tissues intact.
“Normally when you put cells in a 3D gel,” Sniadecki said, “they will use their own contractile forces to pull everything together—which causes the tissue to shrink away from the walls of the mold. But not every cell is super strong, and not every biomaterial can get remodeled like that. So that kind of nonstick quality gave us more versatility.”
Theberge is excited about how other teams will use STOMP.
“This method opens new possibilities for tissue engineering and cell signaling research,” she said. “It was a true team effort of multiple groups working across disciplines.”
More information: Amanda J. Haack et al, Suspended Tissue Open Microfluidic Patterning (STOMP), Advanced Science (2025). DOI: 10.1002/advs.202501148
News
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]
New technique overcomes technological barrier in 3D brain imaging
Scientists at the Swiss Light Source SLS have succeeded in mapping a piece of brain tissue in 3D at unprecedented resolution using X-rays, non-destructively. The breakthrough overcomes a long-standing technological barrier that had limited [...]
Scientists Uncover Hidden Blood Pattern in Long COVID
Researchers found persistent microclot and NET structures in Long COVID blood that may explain long-lasting symptoms. Researchers examining Long COVID have identified a structural connection between circulating microclots and neutrophil extracellular traps (NETs). The [...]
This Cellular Trick Helps Cancer Spread, but Could Also Stop It
Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to limit tumor spread. The tale of the princess and the [...]
New mRNA therapy targets drug-resistant pneumonia
Bacteria that multiply on surfaces are a major headache in health care when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found [...]
Current Heart Health Guidelines Are Failing To Catch a Deadly Genetic Killer
New research reveals that standard screening misses most people with a common inherited cholesterol disorder. A Mayo Clinic study reports that current genetic screening guidelines overlook most people who have familial hypercholesterolemia, an inherited disorder that [...]
Scientists Identify the Evolutionary “Purpose” of Consciousness
Summary: Researchers at Ruhr University Bochum explore why consciousness evolved and why different species developed it in distinct ways. By comparing humans with birds, they show that complex awareness may arise through different neural architectures yet [...]
Novel mRNA therapy curbs antibiotic-resistant infections in preclinical lung models
Researchers at the Icahn School of Medicine at Mount Sinai and collaborators have reported early success with a novel mRNA-based therapy designed to combat antibiotic-resistant bacteria. The findings, published in Nature Biotechnology, show that in [...]















