Not all nanopores are created equal. For starters, their diameters vary between 1 and 10 nanometers (nm).
The smallest of these nanopores, called Single Digit Nanopores (SDNs), have diameters of less than 10 nm and only recently have been used in experiments for precision transport measurements.
A team of Lawrence Livermore National Laboratory (LLNL) scientists and colleagues from seven other institutions, led by the Massachusetts Institute of Technology (MIT), have reviewed recent SDN experiments and identified critical gaps in understanding nanoscale hydrodynamics, molecular sieving, fluidic structure and thermodynamics.
The team said a better understanding of transport at the nanoscale can lead to innovative technologies such as new membranes for water purification, new gas-permeable materials and energy storage devices.
“If we can fill these gaps, we can discover new mechanisms of molecular and ionic transport at the nanoscale that may apply to a host of new technologies,” said LLNL material scientist Tuan Anh Pham, co-author of the article appearing in The Journal of Physical Chemistry (“Critical Knowledge Gaps in Mass Transport through Single-Digit Nanopores: A Review and Perspective”).

Image Credit:  Yuliang Zhang and Alex Noy/LLNL


News This Week

NanoApps Athletics Inc. Established

Frank Boehm (NanoApps Medical Inc. founder) and Amanda Scott (NA CEO) join NanoApps Athletics Inc. NanoApps Athletics Inc proposes a unique synergistic biochemical/nanomedical strategy for the expedited repair and healing of Achilles tendon micro [...]

Light in a new light

In a paper published in Nature's NPJ Quantum Information ("Multiphoton quantum-state engineering using conditional measurements"), Omar Magaña-Loaiza, assistant professor in the Louisiana State University (LSU) Department of Physics & Astronomy, and his team of [...]

Brain-computer interfaces without the mess

It sounds like science fiction: controlling electronic devices with brain waves. But researchers have developed a new type of electroencephalogram (EEG) electrode that can do just that, without the sticky gel required for conventional [...]