Scientists from the University of Bath (UK) and Northwestern University (USA) have developed a new type of sensor platform using a gold nanoparticle array, which is 100 times more sensitive than current similar sensors.

The sensor is made up of a series of gold disk-shaped nanoparticles on a glass slide. The team at Bath discovered that when they shone an infra-red laser at a precise arrangement of the particles, they started to emit unusual amounts of ultra violet (UV) light.

This mechanism for generating UV light is affected by molecules binding to the surface of the nanoparticles, providing a means of sensing a very small amount of material.

The researchers, from the University of Bath’s Department of Physics, hope that in the future they can use the technology to develop new ultra-sensitive sensors for air pollution or for medical diagnostics.

Dr Ventsislav Valev, Royal Society Research Fellow and Reader in Physics at the University of Bath, led the work with Research Associate David Hooper.

He explained: “This new mechanism has great potential for detecting small molecules. It is 100 times more sensitive than current methods.

Image Credit:   V.K Valev and D.C Hooper

Read more at eurekalert.org

News This Week

New, better coronavirus rapid test

Researchers at the Paul Scherrer Institute PSI and the University of Basel have developed a rapid test for COVID-19. Its novel functional principle promises reliable and quantifiable results concerning a patient's COVID-19 disease and [...]

Nanocomposite Hydrogel Improves Bone Repair Treatment

Innovative researchers have investigated the potential of incorporating a gelatin methacryloyl hydrogel functionalized with synthetic nanoclay laponite to improve the delivery of osteoblast derived extracellular vesicles for increased bone repair. This research has been [...]

Applying Nanoemulsions to the Food Sector

Nanoemulsions are a relatively new technology that has found significant use for delivering functional chemicals such as micronutrients, flavorings, bioactive molecules, and antimicrobial agents into food and beverage products. This article focuses on applying [...]