A mechanism used by bacteria to defend themselves could lead to the development of new antibiotics.
Princeton Engineering researchers have found a compound that can kill bacteria that cause incurable infections, with the potential to address the current drug-resistance crisis.
The compound, called cloacaenodin (chloa-say-nodin), is a short, slip-knotted chain of amino acids known as a lasso peptide, encoded by gut-dwelling bacteria as a defense mechanism. Peptides do all kinds of things in the body and have been used in a wide range of medical treatments. This peptide works by attacking rival bacteria, and it’s a very potent killer, according to A. James Link, professor of chemical and biological engineering. If harnessed by science, it could be redirected to fight infections that are not treatable by today’s medicines.
When released, the peptide hooks into a target cell’s RNA-producing enzymes and shuts down basic cell functions. It targets an especially fearsome group of pathogens belonging to the genus Enterobacter, which the Center for Disease Control and Prevention (CDC) has identified as a primary driver in an accelerating global crisis: bacterial infections that increasingly do not respond to conventional antibiotics.
Link’s research group has discovered several peptides in this same class — structured with a ring knotted to a tail that threads back down through the ring, like a lasso in a rodeo trick — that show promising antibacterial properties. He said cloacaenodin is unique because it can kill clinically relevant drug-resistant strains, making it a promising subject for antibiotic development. The finding also suggests his peptide-mining and synthetic biology techniques could reveal more antimicrobial compounds with strong drug-development potential, an essential step in quelling the growing superbug crisis.
“If it’s made by one Enterobacter species, it’s likely going to kill other species of Enterobacter. So it’s this sort of guilt-by-association approach,” Link said. This gives researchers a way to prioritize peptide-mining hits since peptides that are encoded in strains related to pathogens are more likely to have interesting bioactivity, he said.
An urgent need for new approaches
Ever since Anne Miller’s fever broke on March 14, 1942, making her the first person ever saved by an antibiotic, humans have been simultaneously staving off deadly bacteria in the short run and saving millions of lives but also making infections harder to treat in the long run. Call it the law of unintended consequences. Some microbes have evolved rapidly to overwhelm our best efforts to destroy them.
The CDC has identified some Enterobacter species as a particularly urgent threat. Although harmless in the human gut, where they are common, when these bacteria enter the airways or urinary tract, they can cause serious infections. Many evade all known medicines, including a highly effective class of antibiotics known as carbapenems. So-called multi-drug resistance has ballooned over the past two decades. Untreatable infections now claim around a million lives each year, with that number projected to surpass cancer’s death toll and reach 10 million per year by 2050, according to a 2019 United Nations report.
Market forces exacerbate the problem, according to the World Health Organization (WHO). Big pharmaceutical companies have strong financial incentives to pursue treatments for chronic conditions, where patient demand stretches over years. Because infections are treated in short finite intervals, profits from new antibiotics are relatively constrained. Adding to that, to slow drug-resistance dynamics, doctors tend to use newer drugs only after older drugs fail, leading to sluggish demand for small firms. And many new antibiotics don’t present a clear advantage over cheaper, more familiar drugs. Over the past decade, several high-profile biotech startup companies with FDA-approved antibiotic treatments have collapsed under these economic conditions.
All of this has slowed the antibiotic-development pipeline to a trickle. The WHO has called the outlook “bleak.” A recent report said that the “lack of diverse compounds suitable for bacterial treatment” and the “absence of new, suitable chemical matter to serve as leads for drug discovery is a major bottleneck in antibiotic discovery.”
The non-profit organization CARB-X, run out of Boston University, has said developing new classes of antibiotics is the best strategy in addressing this urgent need. “You need a diversity of products,” said CARB-X research and development chief Dr. Erin Duffy. “You need antibiotics — things that kill bacteria once you have an infection — and you need different classes, multiple classes.” More than 20 classes of antibiotics were marketed in the two decades after Anne Miller’s miraculous recovery. But since 1962 only two new antibiotic classes have made it to market, and neither treats the most resistant kinds of infections.
“It’s one thing to kill bacteria,” said Drew Carson, a fourth-year Ph.D. student in chemical and biological engineering and the paper’s first author. “It’s another thing to kill bacteria that can actually make people really sick.”
A guilt-by-association approach
While cloacaenodin shows strong antibacterial properties, it’s only the first of many steps to a new treatment. Determining a compound’s safety is difficult and expensive, and moving from initial testing through the regulatory process takes a minimum of 10 years. Duffy said that, historically, some peptides have proven toxic to the kidneys, curbing their use in drugs. But peptides with bacterial-selective activity that don’t harm animal cells will likely lack this toxicity, according to Link.
But this new compound shows promising antibacterial properties and the researchers have only just begun to consider what comes next. They plan to start by testing it in animal infection models to confirm that it can clear the infection and that it is safe for animal cells. More broadly, however, this compound’s discovery suggests that Link and his team have developed a peptide-mining toolkit that will turn up many other interesting compounds in the future, and there is no telling where that will lead.
“The way that we find these peptides is by looking at the genome sequence of an organism,” Link said. “If you give us any DNA sequence, we can very rapidly and very accurately figure out if there’s a lasso peptide encoded within it. We also know about certain sequences within lasso peptides which means there’s a good chance that they’re antimicrobial. And that’s how we homed in on this one.”
Link said there are thousands of Enterobacter genome sequences that have been entered into scientific databases, and the lasso peptide his team discovered is found in only a handful. One of those organisms came from a hospital patient who had a lung infection. And because of his guilt-by-association approach to finding the peptide, they knew it would likely kill many related organisms that don’t have the exact same genes.
“We tested it against a dozen or so strains and saw activity,” Link said, referring to antibacterial activity. “But it potentially has activity against several hundred and maybe even thousands of these sequenced isolates of Enterobacter.”

News
New Once-a-Week Shot Promises Life-Changing Relief for Parkinson’s Patients
A once-a-week shot from Australian scientists could spare people with Parkinson’s the grind of taking pills several times a day. The tiny, biodegradable gel sits under the skin and releases steady doses of two [...]
Weekly injectable drug offers hope for Parkinson’s patients
A new weekly injectable drug could transform the lives of more than eight million people living with Parkinson's disease, potentially replacing the need for multiple daily tablets. Scientists from the University of South Australia [...]
Most Plastic in the Ocean Is Invisible—And Deadly
Nanoplastics—particles smaller than a human hair—can pass through cell walls and enter the food web. New research suggest 27 million metric tons of nanoplastics are spread across just the top layer of the North [...]
Repurposed drugs could calm the immune system’s response to nanomedicine
An international study led by researchers at the University of Colorado Anschutz Medical Campus has identified a promising strategy to enhance the safety of nanomedicines, advanced therapies often used in cancer and vaccine treatments, [...]
Nano-Enhanced Hydrogel Strategies for Cartilage Repair
A recent article in Engineering describes the development of a protein-based nanocomposite hydrogel designed to deliver two therapeutic agents—dexamethasone (Dex) and kartogenin (KGN)—to support cartilage repair. The hydrogel is engineered to modulate immune responses and promote [...]
New Cancer Drug Blocks Tumors Without Debilitating Side Effects
A new drug targets RAS-PI3Kα pathways without harmful side effects. It was developed using high-performance computing and AI. A new cancer drug candidate, developed through a collaboration between Lawrence Livermore National Laboratory (LLNL), BridgeBio Oncology [...]
Scientists Are Pretty Close to Replicating the First Thing That Ever Lived
For 400 million years, a leading hypothesis claims, Earth was an “RNA World,” meaning that life must’ve first replicated from RNA before the arrival of proteins and DNA. Unfortunately, scientists have failed to find [...]
Why ‘Peniaphobia’ Is Exploding Among Young People (And Why We Should Be Concerned)
An insidious illness is taking hold among a growing proportion of young people. Little known to the general public, peniaphobia—the fear of becoming poor—is gaining ground among teens and young adults. Discover the causes [...]
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]