Tiny circles of DNA harbor cancer-associated oncogenes and immunomodulatory genes promoting cancer development. They arise during the transformation from pre-cancer to cancer, say Stanford Medicine-led team.
Tiny circles of DNA that defy the accepted laws of genetics are key drivers of cancer formation, according to an international study led by researchers at Stanford Medicine.
The circles, known as extrachromosomal DNA or ecDNA, often harbor cancer-associated genes called oncogenes. Because they can exist in large numbers in a cell, they deliver a super-charged growth signal that can override a cell's natural programming. They also contain genes likely to dampen the immune system's response to a nascent cancer, the researchers found.
"This study has profound implications for our understanding of ecDNA in tumor development," said professor of pathology Paul Mischel, MD. "It shows the power and diversity of ecDNA as a fundamental process in cancer. It has implications for early diagnosis of precancers that put patients at risk, and it highlights the potential for earlier intervention as treatments are developed."
Mischel is one of six senior authors of the research, which was published recently in the journal Nature. Howard Chang, MD, PhD, professor of genetics and the Virginia and D.K. Ludwig Professor in Cancer Research, is also a senior author. Other senior authors include senior staff scientist Thomas Paulson, PhD, from Seattle's Fred Hutchison Cancer Center; assistant professor of pediatrics Sihan Wu, PhD, assistant professor at Children's Medical Center Research Institute at the University of Texas Southwestern Medical Center; professor of computer science and engineering Vineet Bafna, PhD, from UC San Diego; and professor of cancer prevention and director of the Early Cancer Institute Rebecca Fitzgerald, MD, from the University of Cambridge.
"People with ecDNA in their precancerous cells are 20 to 30 times more likely than others to develop cancer," Chang said. "This is a huge increase, and it means we really need to pay attention to this. Because we also found that some ecDNAs carry genes that affect the immune system, it suggests that they may also promote early immune escape."
A grand challenge
Deciphering ecDNA's role in cancer was one of four Cancer Grand Challenges awarded by the National Cancer Institute and Cancer Research UK in 2022. The grand challenges program was launched to bring together researchers from around the world to tackle complex research topics too daunting for any one group. Mischel was awarded $25 million to lead a team of international researchers to learn more about the circles. But first they had to jettison some key genetic principles that have guided the field for nearly 200 years.
"When we think about how a tumor evolves in a patient and in response to treatment, we think of the branching trees of life proposed by Charles Darwin," Mischel said. "This idea is so powerful that researchers often sequence the DNA from multiple parts of a tumor and draw these trees to learn about its evolution. If a mutation is there at the trunk of the tree and in all of its branches, we assume it is a key driver event in the formation of the tumor; if it is in only some branches, we assume it happened later in tumor development and may not be a good target for drug development."
But these assumptions hinge on the idea that all of a tumor's DNA is neatly contained on chromosomes, which are evenly divided among daughter cells each time a cancer cell divides — ensuring that each new cell gets one, and only one, copy of each chromosome.
In contrast, the tiny ecDNA circles swirl in a dividing cell like bubbles circling a bathtub drain and are portioned willy-nilly between the new daughter cells. One may get nearly all the circles; the other, almost none. As the generations accumulate, the evolutionary tree favored by Darwin begins to look decidedly odd, with the appearance of ecDNA-bearing cells sprinkled among the branches like haphazardly hung Christmas lights.
"Some researchers have looked at the evolutionary trees and decided that, because you see it here, but not there, it must be that ecDNA formation is a late event and probably isn't important when considering treatments," Mischel said. "Our team thought that interpretation was wrong."
Pinpointing a reason
To get to the bottom of the tiny circles, Mischel, Chang and their collaborators turned to a specific example of cancer development — people with a condition known as Barrett's esophagus, which occurs when the cells lining the lower part of the esophagus are damaged by acid reflux and become more like cells lining the intestine than healthy esophageal tissue. About 1% of these people develop esophageal cancer, which is difficult to treat and has a high mortality rate. Because the outcome is so poor, people with Barrett's esophagus are routinely monitored with endoscopies and biopsies of the abnormal tissue. Because of these frequent biopsies, the researchers had access to tissue samples collected both before and after cancers developed.
The researchers assessed the prevalence of ecDNA, and identified the genes they carried, in biopsies from nearly 300 people with Barrett's esophagus or esophageal cancer treated at the University of Cambridge or at Seattle's Fred Hutchison Cancer Center, where individual patients were studied as the cancer developed. They found that the prevalence of ecDNA increased from 24% to 43% in early- versus late-stage esophageal cancer, indicating the continual formation of the DNA circles during cancer progression. More tellingly, they found that 33% of people with Barrett's esophagus who developed esophageal cancer had ecDNA in their precancerous cells. In contrast, only one out of 40 people who didn't develop cancer had cells with ecDNA, and that individual passed away due to another cause.
"The conclusions were remarkable," Mischel said. "We see that ecDNA can arise in these precancerous cells, and that if it is there, the patient is going to get cancer. We also saw the continuous formation of ecDNA as the cancer progresses, indicating that it is advantageous to cancer growth. Finally, we saw that the ecDNA can contain immune-modulatory genes in addition to oncogenes."
"If a gene is carried on ecDNA, it is very likely to be important for cancer," Chang said. "These circles are not only giving us new targets for cancer diagnosis and drug development; they are also teaching us what is important for tumor growth."
What to look at next
The researchers are planning to explore more about how ecDNAs arise in cancer cells and how they work together to make proteins that drive cancer cell growth. They saw that cancers with ecDNA were likely to also have mutations in a protein called p53. Sometimes called "the guardian of the genome," p53 temporarily halts the cell cycle to allow cells to repair damage or mutations to their DNA before beginning to divide.
"We want to learn more about the landscape of ecDNA in precancers and the risks it confers," Mischel said. "We also want to know if we can stop its formation or activity; how to improve our ability to detect their presence; how they affect the immune system; and whether there are opportunities for new, novel therapies. There is much more to learn, and our team is excited to tackle all these issues. But what we do know for certain is that these tiny DNA circles are a very big deal in cancer."
News
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]
Nanoplastics with environmental coatings can sneak past the skin’s defenses
Plastic is ubiquitous in the modern world, and it's notorious for taking a long time to completely break down in the environment - if it ever does. But even without breaking down completely, plastic [...]
Chernobyl scientists discover black fungus feeding on deadly radiation
It looks pretty sinister, but it might actually be incredibly helpful When reactor number four in Chernobyl exploded, it triggered the worst nuclear disaster in history, one which the surrounding area still has not [...]
Long COVID Is Taking A Silent Toll On Mental Health, Here’s What Experts Say
Months after recovering from COVID-19, many people continue to feel unwell. They speak of exhaustion that doesn’t fade, difficulty breathing, or an unsettling mental haze. What’s becoming increasingly clear is that recovery from the [...]
Study Delivers Cancer Drugs Directly to the Tumor Nucleus
A new peptide-based nanotube treatment sneaks chemo into drug-resistant cancer cells, providing a unique workaround to one of oncology’s toughest hurdles. CiQUS researchers have developed a novel molecular strategy that allows a chemotherapy drug to [...]
Scientists Begin $14.2 Million Project To Decode the Body’s “Hidden Sixth Sense”
An NIH-supported initiative seeks to unravel how the nervous system tracks and regulates the body’s internal organs. How does your brain recognize when it’s time to take a breath, when your blood pressure has [...]
Scientists Discover a New Form of Ice That Shouldn’t Exist
Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure. Ice comes in many forms, even when made of nothing but water [...]
Nobel-winning, tiny ‘sponge crystals’ with an astonishing amount of inner space
The 2025 Nobel Prize in chemistry was awarded to Richard Robson, Susumu Kitagawa and Omar Yaghi on Oct. 8, 2025, for the development of metal-organic frameworks, or MOFs, which are tunable crystal structures with extremely [...]
Harnessing Green-Synthesized Nanoparticles for Water Purification
A new review reveals how plant- and microbe-derived nanoparticles can power next-gen water disinfection, delivering cleaner, safer water without the environmental cost of traditional treatments. A recent review published in Nanomaterials highlights the potential of green-synthesized nanomaterials (GSNMs) in [...]
Brainstem damage found to be behind long-lasting effects of severe Covid-19
Damage to the brainstem - the brain's 'control center' - is behind long-lasting physical and psychiatric effects of severe Covid-19 infection, a study suggests. Using ultra-high-resolution scanners that can see the living brain in [...]















