Tiny circles of DNA harbor cancer-associated oncogenes and immunomodulatory genes promoting cancer development. They arise during the transformation from pre-cancer to cancer, say Stanford Medicine-led team.
Tiny circles of DNA that defy the accepted laws of genetics are key drivers of cancer formation, according to an international study led by researchers at Stanford Medicine.
The circles, known as extrachromosomal DNA or ecDNA, often harbor cancer-associated genes called oncogenes. Because they can exist in large numbers in a cell, they deliver a super-charged growth signal that can override a cell's natural programming. They also contain genes likely to dampen the immune system's response to a nascent cancer, the researchers found.
"This study has profound implications for our understanding of ecDNA in tumor development," said professor of pathology Paul Mischel, MD. "It shows the power and diversity of ecDNA as a fundamental process in cancer. It has implications for early diagnosis of precancers that put patients at risk, and it highlights the potential for earlier intervention as treatments are developed."
Mischel is one of six senior authors of the research, which was published recently in the journal Nature. Howard Chang, MD, PhD, professor of genetics and the Virginia and D.K. Ludwig Professor in Cancer Research, is also a senior author. Other senior authors include senior staff scientist Thomas Paulson, PhD, from Seattle's Fred Hutchison Cancer Center; assistant professor of pediatrics Sihan Wu, PhD, assistant professor at Children's Medical Center Research Institute at the University of Texas Southwestern Medical Center; professor of computer science and engineering Vineet Bafna, PhD, from UC San Diego; and professor of cancer prevention and director of the Early Cancer Institute Rebecca Fitzgerald, MD, from the University of Cambridge.
"People with ecDNA in their precancerous cells are 20 to 30 times more likely than others to develop cancer," Chang said. "This is a huge increase, and it means we really need to pay attention to this. Because we also found that some ecDNAs carry genes that affect the immune system, it suggests that they may also promote early immune escape."
A grand challenge
Deciphering ecDNA's role in cancer was one of four Cancer Grand Challenges awarded by the National Cancer Institute and Cancer Research UK in 2022. The grand challenges program was launched to bring together researchers from around the world to tackle complex research topics too daunting for any one group. Mischel was awarded $25 million to lead a team of international researchers to learn more about the circles. But first they had to jettison some key genetic principles that have guided the field for nearly 200 years.
"When we think about how a tumor evolves in a patient and in response to treatment, we think of the branching trees of life proposed by Charles Darwin," Mischel said. "This idea is so powerful that researchers often sequence the DNA from multiple parts of a tumor and draw these trees to learn about its evolution. If a mutation is there at the trunk of the tree and in all of its branches, we assume it is a key driver event in the formation of the tumor; if it is in only some branches, we assume it happened later in tumor development and may not be a good target for drug development."
But these assumptions hinge on the idea that all of a tumor's DNA is neatly contained on chromosomes, which are evenly divided among daughter cells each time a cancer cell divides — ensuring that each new cell gets one, and only one, copy of each chromosome.
In contrast, the tiny ecDNA circles swirl in a dividing cell like bubbles circling a bathtub drain and are portioned willy-nilly between the new daughter cells. One may get nearly all the circles; the other, almost none. As the generations accumulate, the evolutionary tree favored by Darwin begins to look decidedly odd, with the appearance of ecDNA-bearing cells sprinkled among the branches like haphazardly hung Christmas lights.
"Some researchers have looked at the evolutionary trees and decided that, because you see it here, but not there, it must be that ecDNA formation is a late event and probably isn't important when considering treatments," Mischel said. "Our team thought that interpretation was wrong."
Pinpointing a reason
To get to the bottom of the tiny circles, Mischel, Chang and their collaborators turned to a specific example of cancer development — people with a condition known as Barrett's esophagus, which occurs when the cells lining the lower part of the esophagus are damaged by acid reflux and become more like cells lining the intestine than healthy esophageal tissue. About 1% of these people develop esophageal cancer, which is difficult to treat and has a high mortality rate. Because the outcome is so poor, people with Barrett's esophagus are routinely monitored with endoscopies and biopsies of the abnormal tissue. Because of these frequent biopsies, the researchers had access to tissue samples collected both before and after cancers developed.
The researchers assessed the prevalence of ecDNA, and identified the genes they carried, in biopsies from nearly 300 people with Barrett's esophagus or esophageal cancer treated at the University of Cambridge or at Seattle's Fred Hutchison Cancer Center, where individual patients were studied as the cancer developed. They found that the prevalence of ecDNA increased from 24% to 43% in early- versus late-stage esophageal cancer, indicating the continual formation of the DNA circles during cancer progression. More tellingly, they found that 33% of people with Barrett's esophagus who developed esophageal cancer had ecDNA in their precancerous cells. In contrast, only one out of 40 people who didn't develop cancer had cells with ecDNA, and that individual passed away due to another cause.
"The conclusions were remarkable," Mischel said. "We see that ecDNA can arise in these precancerous cells, and that if it is there, the patient is going to get cancer. We also saw the continuous formation of ecDNA as the cancer progresses, indicating that it is advantageous to cancer growth. Finally, we saw that the ecDNA can contain immune-modulatory genes in addition to oncogenes."
"If a gene is carried on ecDNA, it is very likely to be important for cancer," Chang said. "These circles are not only giving us new targets for cancer diagnosis and drug development; they are also teaching us what is important for tumor growth."
What to look at next
The researchers are planning to explore more about how ecDNAs arise in cancer cells and how they work together to make proteins that drive cancer cell growth. They saw that cancers with ecDNA were likely to also have mutations in a protein called p53. Sometimes called "the guardian of the genome," p53 temporarily halts the cell cycle to allow cells to repair damage or mutations to their DNA before beginning to divide.
"We want to learn more about the landscape of ecDNA in precancers and the risks it confers," Mischel said. "We also want to know if we can stop its formation or activity; how to improve our ability to detect their presence; how they affect the immune system; and whether there are opportunities for new, novel therapies. There is much more to learn, and our team is excited to tackle all these issues. But what we do know for certain is that these tiny DNA circles are a very big deal in cancer."
News
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]
New technique overcomes technological barrier in 3D brain imaging
Scientists at the Swiss Light Source SLS have succeeded in mapping a piece of brain tissue in 3D at unprecedented resolution using X-rays, non-destructively. The breakthrough overcomes a long-standing technological barrier that had limited [...]
Scientists Uncover Hidden Blood Pattern in Long COVID
Researchers found persistent microclot and NET structures in Long COVID blood that may explain long-lasting symptoms. Researchers examining Long COVID have identified a structural connection between circulating microclots and neutrophil extracellular traps (NETs). The [...]
This Cellular Trick Helps Cancer Spread, but Could Also Stop It
Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to limit tumor spread. The tale of the princess and the [...]
New mRNA therapy targets drug-resistant pneumonia
Bacteria that multiply on surfaces are a major headache in health care when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found [...]
Current Heart Health Guidelines Are Failing To Catch a Deadly Genetic Killer
New research reveals that standard screening misses most people with a common inherited cholesterol disorder. A Mayo Clinic study reports that current genetic screening guidelines overlook most people who have familial hypercholesterolemia, an inherited disorder that [...]
Scientists Identify the Evolutionary “Purpose” of Consciousness
Summary: Researchers at Ruhr University Bochum explore why consciousness evolved and why different species developed it in distinct ways. By comparing humans with birds, they show that complex awareness may arise through different neural architectures yet [...]
Novel mRNA therapy curbs antibiotic-resistant infections in preclinical lung models
Researchers at the Icahn School of Medicine at Mount Sinai and collaborators have reported early success with a novel mRNA-based therapy designed to combat antibiotic-resistant bacteria. The findings, published in Nature Biotechnology, show that in [...]
New skin-permeable polymer delivers insulin without needles
A breakthrough zwitterionic polymer slips through the skin’s toughest barriers, carrying insulin deep into tissue and normalizing blood sugar, offering patients a painless alternative to daily injections. A recent study published in the journal Nature examines [...]
Multifunctional Nanogels: A Breakthrough in Antibacterial Strategies
Antibiotic resistance is a growing concern - from human health to crop survival. A new study successfully uses nanogels to target and almost entirely inhibit the bacteria P. Aeruginosa. Recently published in Angewandte Chemie, the study [...]
Nanoflowers rejuvenate old and damaged human cells by replacing their mitochondria
Biomedical researchers at Texas A&M University may have discovered a way to stop or even reverse the decline of cellular energy production—a finding that could have revolutionary effects across medicine. Dr. Akhilesh K. Gaharwar [...]















