More efficient and longer lasting glucose-responsive insulin that eliminates the need for people with type 1 diabetes to measure their glucose levels could be a step closer thanks to a Monash University-led project.
The researchers from Monash University, RMIT University, The University of Melbourne and the Baker Institute developed the system to respond to glucose, which current insulin does not.
Co-first author Dr. Rong Xu, from the Monash University Central Clinical School’s Australian Center for Blood Diseases, and Dr. Sukhvir Kaur Bhangu from RMIT University and the University of Melbourne said if it worked in humans, only two injections would be needed per day.
Current insulin therapy requires people to monitor their blood sugar throughout the day and take multiple, carefully calculated doses based on food intake, exercise, stress, illness and other factors.
Some must inject themselves up to five times a day. Continuous glucose monitoring devices remove, or at least reduce, the need for finger pricks, and insulin pumps can automatically deliver insulin, but they are very expensive and still are not always able to calculate the correct amount of insulin to be given.
The multidisciplinary team developed a new “artificial pancreas system” using phytoglycogen nanoparticles, which are chains on glucose molecules dubbed a “nanosugar platform” as they are made of glucose, to deliver and release insulin in response to glucose levels in the blood.
This engineered nanosugar platform enabled rapid and sustained glucose-responsive insulin delivery, which was longer lasting and smarter than other systems.
Dr. Xu said it required only one injection every 12 hours and self-regulated. “This system would mean fewer injections and, potentially, no need to measure glucose,” Dr. Xu said.
The research emerged from an NHMRC Ideas Grant awarded to co-lead author and Head of Monash University’s Australian Center for Blood Diseases NanoBiotechnology Laboratory, Professor Christoph Hagemeyer, co-lead author and RMIT Associate Professor Francesca Cavalieri, and co-author Professor Frank Caruso at the University of Melbourne to develop this revolutionary type of insulin.
Professor Hagemeyer said more research was needed but the results were promising. He said the nanosugar platform was biodegradable, which enabled rapid and extended glucose control in two different models of type 1 diabetes with a single injection.
“The nanosugar particles are engineered to control insulin release and absorption through the lymphatic system into the blood,” he said.
Professor Cavalieri said the research team, which includes several clinicians, now hoped to secure funding to continue the project and eventually undertake clinical trials. “This new method is not only efficient, it’s biodegradable and uses natural methods, which significantly reduces the chances of adverse affects or immune reactions,” she said.

News
DREAM complex could hold key to fighting cancer and living longer
DNA may be the stuff of life, but if it isn't repaired in our bodies on a regular basis, it can lead to diseases that can cause some pretty unpleasant types of death. DNA [...]
A Promising New Pathway in the Battle Against Aggressive Prostate Cancer
Neuronal Molecule Makes Prostate Cancer More Aggressive Researchers discover a potential therapeutic avenue against an aggressive form of prostate cancer. Prostate cancer is the second most common cancer and the second leading cause of [...]
Nasal Vaccines: Stopping the COVID-19 Virus Before It Reaches the Lungs
The Pfizer-BioNTech and Moderna mRNA vaccines have played a large role in preventing deaths and severe infections from COVID-19. But researchers are still in the process of developing alternative approaches to vaccines to improve [...]
NASA Tracking a Huge, Growing Anomaly in Earth’s Magnetic Field – with video
NASA is actively monitoring a strange anomaly in Earth's magnetic field: a giant region of lower magnetic intensity in the skies above the planet, stretching out between South America and southwest Africa. This vast, developing [...]
New, Better Models Show How Infectious Diseases Like COVID-19 Spread
Infectious diseases such as COVID-19 can spread rapidly across the globe. Models that can predict how such diseases spread will strengthen national surveillance systems and improve public health decision-making. The COVID-19 pandemic has emphasized the [...]
Human Antibodies Discovered That Can Block Multiple Coronaviruses Including COVID-19
Results from a Scripps Research and UNC team pave the way for a vaccine and therapeutic antibodies that could be stockpiled to fight future coronavirus pandemics. A team of scientists from Scripps Research and [...]
Nanotechnology could be used to treat lymphedema
The human body is made up of thousands of tiny lymphatic vessels that ferry white blood cells and proteins around the body, like a superhighway of the immune system. It's remarkably efficient, but if [...]
DNA Nanotechnology Tools – From Design to Applications
Suite of DNA nanotechnology devices engineered to overcome specific bottlenecks in the development of new therapies, diagnostics, and understanding of molecular structures. DNA nanostructures with their potential for cell and tissue permeability, biocompatibility, and [...]
Regenerating bone with deer antler stem cells
Scientists from a collection of Chinese research institutions collaborated on a study of organ regeneration in mammals, finding deer antler blastema progenitor cells are a possible source of conserved regeneration cells in higher vertebrates. [...]
AI Takes On Cancer: Analysis of Mutations Could Lead to Improved Therapy
Cancer is a complex and diverse disease, and its range of associated mutations is vast. The combination of these genomic changes in an individual is referred to as their “mutational landscape.” These landscapes vary [...]
Exposing tumours to bacteria converts immune cells to cancer killers
New research on inflammation could lead to better treatments to improve outcomes for people with advanced or previously untreatable cancers. Introducing bacteria to a tumour’s microenvironment creates a state of acute inflammation that triggers [...]
Smart nanotechnology for more accurate delivery of insulin
More efficient and longer lasting glucose-responsive insulin that eliminates the need for people with type 1 diabetes to measure their glucose levels could be a step closer thanks to a Monash University-led project. Published [...]
Efficiently Harvesting Rare Earth Elements From Wastewater Using Exotic Bacteria
The novel strains of cyanobacteria exhibit a fast and efficient “biosorption” of rare earth elements, making recycling possible. Rare earth elements (REEs) are a set of 17 metallic elements that possess similar chemical properties. [...]
Resisting Treatment: Cancer Cells Shrink or Super-Size To Survive
A new approach to image analysis has uncovered how cancer cells manipulate their size as a means of resisting treatment. Researchers have discovered that cancer cells are capable of either shrinking or super-size themselves [...]
New Research Explains Why Children Avoid Severe COVID-19 Symptoms
According to new research, children exhibit a robust initial immune response to the coronavirus, however, they are unable to transfer this response to long-lasting memory T cells like adults do. Researchers led by scientists [...]
Scientists Unravel Protein Map of Mitochondria
A new study sheds light on the organization of proteins within mitochondria. Mitochondria, the “powerhouses” of cells, play a crucial role in the energy production of organisms and are involved in various metabolic and [...]