Scientists have developed tiny elastic robots that can change shape depending on their surroundings. Modeled after bacteria and fully biocompatible, these robots optimize their movements so as to get to hard-to-reach areas of the human body. They stand to revolutionize targeted drug delivery.
One day we may be able to ingest tiny robots that deliver drugs directly to diseased tissue, thanks to research being carried out at EPFL and ETH Zurich.
The group of scientists — led by Selman Sakar at EPFL and Bradley Nelson at ETH Zurich — drew inspiration from bacteria to design smart, biocompatible microrobots that are highly flexible. Because these devices are able to swim through fluids and modify their shape when needed, they can pass through narrow blood vessels and intricate systems without compromising on speed or maneuverability. They are made of hydrogel nanocomposites that contain magnetic nanoparticles allowing them to be controlled via an electromagnetic field.
In an article appearing in Science Advances, the scientists describe the method they have developed for “programming” the robot’s shape so that it can easily travel through fluids that are dense, viscous or moving at rapid speeds.
Embodied intelligence
When we think of robots, we generally think of bulky machines equipped with complex systems of electronics, sensors, batteries and actuators. But on a microscopic scale, robots are entirely different.
Fabricating miniaturized robots presents a host of challenges, which the scientists addressed using an origami-based folding method. Their novel locomotion strategy employs embodied intelligence, which is an alternative to the classical computation paradigm that is performed by embedded electronic systems. “Our robots have a special composition and structure that allow them to adapt to the characteristics of the fluid they are moving through. For instance, if they encounter a change in viscosity or osmotic concentration, they modify their shape to maintain their speed and maneuverability without losing control of the direction of motion,” says Sakar.
These deformations can be “programmed” in advance so as to maximize performance without the use of cumbersome sensors or actuators. The robots can be either controlled using an electromagnetic field or left to navigate on their own through cavities by utilizing fluid flow. Either way, they will automatically morph into the most efficient shape.
Image Credit: ETH Zurich
Thanks to Heinz V. Hoenen. Follow him on twitter: @HeinzVHoenen

News This Week
Biopharma Creates New Generation LNPs In A Run For A More Efficient COVID-19 Vaccine
The COVID-19 pandemic highlighted the need for fast-produced and adaptable vaccines that could be equally distributed around the world. Developing an efficient mRNA vaccine that is effective, thermostable, and has fewer side effects strongly [...]
Researchers Assess How Well Machine Learning Predicts Nanotoxicology
Engineered nanomaterials (ENMs) have found their applications in various technologies and consumer products. Manipulating chemicals at the nanoscale range introduces unique characteristics to these materials and makes them desirable for technological applications. With the [...]
Smart nanoparticle shows that intermittent fasting may protect the heart from damage during chemotherapy
Although chemotherapy can be a lifesaving treatment for patients with cancer, some of these medications can damage the heart. A team led by researchers at Massachusetts General Hospital (MGH) recently developed a nanoparticle probe [...]
From nasal vaccines to pills: the next defences against Covid
When the autumn booster programme begins next month, many people are likely to receive Moderna’s new bivalent vaccine, designed to protect against the original Covid strain and the more transmissible Omicron variant. As Covid continues [...]
Novel design for nanoparticles that train immune cells into fighting cancer
Scientists of the department of Advanced Organ Bioengineering and Therapeutics (TechMed Centre) recently published a novel cancer immune therapy in the scientific journal Nature Communications ("Cancer immune therapy using engineered ‛tail-flipping’ nanoliposomes targeting alternatively activated macrophages"). [...]
Smart contact lenses for cancer diagnostics and screening
Scientists from the Terasaki Institute for Biomedical Innovation (TIBI) have developed a contact lens that can capture and detect exosomes, nanometer-sized vesicles found in bodily secretions which have the potential for being diagnostic cancer [...]
Novel Nanoplatform Found Effective Against Esophageal Cancer
Among the total number of deaths caused by different types of cancer, esophageal cancer is the sixth most significant. Several conventional treatments, such as radiotherapy, chemotherapy, and surgery have multiple side effects, including off-target [...]
Stem Cell Membrane-Coated Nanoparticles in Tumor Therapy
Cell membrane-coated nanoparticles, applied in targeted drug delivery strategies, combine the intrinsic advantages of synthetic nanoparticles and cell membranes. Although stem cell-based delivery systems were highlighted for their targeting capability in tumor therapy, inappropriate [...]
The TB Vaccine Mysteriously Protects Against Lots of Things. Now We Know Why
When babies in the African countries of Guinea Bissau and Uganda were given the tuberculosis vaccine, something remarkable happened. Instead of the vaccine only protecting against the target bacteria – Myocbacterium tuberculosis – the tuberculosis vaccine offered broad protection against a [...]
Extinct Pathogens Ushered The Fall of Ancient Civilizations, Scientists Say
Thousands of years ago, across the Eastern Mediterranean, multiple Bronze Age civilizations took a distinct turn for the worse at around the same time. The Old Kingdom of Egypt and the Akkadian Empire both collapsed, and there was [...]
The Origins of Covid-19 Are More Complicated Than Once Thought
IN OCTOBER 2014, virologist Edward Holmes took a tour of the Huanan Seafood Wholesale Market in Wuhan, a once relatively overlooked city of about 11 million people in the central Chinese province of Hubei. The market would [...]
Self-Healable, Human-Like Artificial Skin
Self-healable ionic sensing materials with fatigue resistance are imperative in robotics and soft electronics for extended service life. The existing artificial ionic skins with self-healing capacity were prepared by network reconfiguration, constituting low-energy amorphous [...]
Nanoparticles increase light scattering, boost solar cell performance
As demand for solar energy rises around the world, scientists are working to improve the performance of solar devices—important if the technology is to compete with traditional fuels. But researchers face theoretical limits on [...]
Scientists Use Shrimp Shell Nanoparticles to Strengthen Cement
When shrimp shell nanoparticles were mixed into cement paste, the material became substantially stronger — researchers propose an innovation that could lead to less seafood waste and fewer carbon dioxide emissions from concrete production. [...]
Does This Video Show A Nanobot Inseminating Egg With “Lazy” Sperm?
A black-and-white video shared on social media showed a microscopic corkscrew-shaped helix as it appeared to consume a sperm, transport it, and ultimately lead the little swimmer into the wall of an [...]
Study Could Help Reduce Environmental Risk of Quantum Dots
Polymers containing quantum dots (QDs) are considered crucial components of next-generation consumer items, but ambiguity remains regarding how these compounds may negatively affect public health and the environment. A pre-proof paper from the Journal of Hazardous [...]
Leave A Comment