A new method enables precise nanofabrication inside silicon using spatial light modulation and laser pulses, creating advanced nanostructures for potential use in electronics and photonics.
Silicon, the cornerstone of modern electronics, photovoltaics, and photonics, has traditionally been limited to surface-level nanofabrication due to the challenges posed by existing lithographic techniques. Available methods either fail to penetrate the wafer surface without causing alterations or are limited by the micron-scale resolution of laser lithography within Si.
In the spirit of Richard Feynman's famous dictum, 'There's plenty of room at the bottom', this breakthrough aligns with the vision of exploring and manipulating matter at the nanoscale. The innovative technique developed by the Bilkent team surpasses current limitations, enabling controlled fabrication of nanostructures buried deep inside silicon wafers with unprecedented control.
Breakthrough in Nanoscale Fabrication
The team tackled the dual challenge of complex optical effects within the wafer and the inherent diffraction limit of the laser light. They overcome these by employing a special type of laser pulse, created by an approach called spatial light modulation. The non-diffracting nature of the beam overcomes optical scattering effects that have previously hindered precise energy deposition, inducing extremely small, localized voids inside the wafer. This process is followed by an emergent seeding effect, where preformed subsurface nano-voids establish strong field enhancement around their immediate neighborhood. This new fabrication regime marks an improvement by an order of magnitude over the state-of-the-art, achieving feature sizes down to 100 nm.
Advanced Laser Techniques for Nanolithography
"Our approach is based on localizing the energy of the laser pulse within a semiconductor material to an extremely small volume, such that one can exploit emergent field enhancement effects analogous to those in plasmonics. This leads to sub-wavelength and multi-dimensional control directly inside the material," explained Prof. Tokel. "We can now fabricate nanophotonic elements buried in silicon, such as nanogratings with high diffraction efficiency and even spectral control."
Enhancing Nanofabrication Through Laser Polarization
The researchers used spatially-modulated laser pulses, technically corresponding to a Bessel function. The non-diffracting nature of this special laser beam, which is created with advanced holographic projection techniques, enables precise energy localization. This, in turn, leads to high temperature and pressure values enough to modify the material at a small volume. Remarkably, the resulting field enhancement, once established, sustains itself through a seeding type mechanism. Simply put, the creation of earlier nanostructures helps fabricate the later nanostructures. The use of laser polarization provides additional control over the alignment and symmetry of nanostructures, enabling the creation of diverse nano-arrays with high precision.
"By leveraging the anisotropic feedback mechanism found in the laser-material interaction system, we achieved polarization-controlled nanolithography in silicon," said Dr. Asgari Sabet, the study's first author. "This capability allows us to guide the alignment and symmetry of the nanostructures at the nanoscale."
Future Implications and Applications
The research team demonstrated large-area volumetric nanostructuring with beyond-diffraction-limit features, enabling proof-of-concept buried nano-photonic elements. These advances have significant implications for developing nano-scale systems with unique architectures. "We believe the emerging design freedom in arguably the most important technological material will find exciting applications in electronics and photonics," said Tokel. "The beyond-diffraction-limit features and multi-dimensional control imply future advances, such as metasurfaces, metamaterials, photonic crystals, numerous information processing applications, and even 3D integrated electronic-photonic systems."
Concluding Remarks on Nano-Scale Fabrication Innovations
"Our findings introduce a new fabrication paradigm for silicon," concluded Prof. Tokel, "The ability to fabricate at the nano-scale directly inside silicon opens up a new regime, toward further integration and advanced photonics. We can now start asking whether complete three-dimensional nano-fabrication in silicon is possible. Our study is the first step in that direction."
Reference: "Laser nanofabrication inside silicon with spatial beam modulation and anisotropic seeding" by Rana Asgari Sabet, Aqiq Ishraq, Alperen Saltik, Mehmet Bütün and Onur Tokel, 16 July 2024, Nature Communications.
DOI: 10.1038/s41467-024-49303-z
The research team consists of Rana Asgari Sabet, Aqiq Ishraq, Alperen Saltik, Mehmet Bütün, and Onur Tokel, all affiliated with the Department of Physics and the National Nanotechnology Research Center at Bilkent University. Their expertise spans various fields, including optics, materials science, and nanotechnology.
Funding: This study is supported by The Scientific and Technological Research Council of Türkiye (TUBITAK) and the Turkish Academy of Sciences.
News
New book from NanoappsMedical Inc – Molecular Manufacturing: The Future of Nanomedicine
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
A Virus Designed in the Lab Could Help Defeat Antibiotic Resistance
Scientists can now design bacteria-killing viruses from DNA, opening a faster path to fighting superbugs. Bacteriophages have been used as treatments for bacterial infections for more than a century. Interest in these viruses is rising [...]
Sleep Deprivation Triggers a Strange Brain Cleanup
When you don’t sleep enough, your brain may clean itself at the exact moment you need it to think. Most people recognize the sensation. After a night of inadequate sleep, staying focused becomes harder [...]
Lab-grown corticospinal neurons offer new models for ALS and spinal injuries
Researchers have developed a way to grow a highly specialized subset of brain nerve cells that are involved in motor neuron disease and damaged in spinal injuries. Their study, published today in eLife as the final [...]
Urgent warning over deadly ‘brain swelling’ virus amid fears it could spread globally
Airports across Asia have been put on high alert after India confirmed two cases of the deadly Nipah virus in the state of West Bengal over the past month. Thailand, Nepal and Vietnam are among the [...]
This Vaccine Stops Bird Flu Before It Reaches the Lungs
A new nasal spray vaccine could stop bird flu at the door — blocking infection, reducing spread, and helping head off the next pandemic. Since first appearing in the United States in 2014, H5N1 [...]
These two viruses may become the next public health threats, scientists say
Two emerging pathogens with animal origins—influenza D virus and canine coronavirus—have so far been quietly flying under the radar, but researchers warn conditions are ripe for the viruses to spread more widely among humans. [...]
COVID-19 viral fragments shown to target and kill specific immune cells
COVID-19 viral fragments shown to target and kill specific immune cells in UCLA-led study Clues about extreme cases and omicron’s effects come from a cross-disciplinary international research team New research shows that after the [...]
Smaller Than a Grain of Salt: Engineers Create the World’s Tiniest Wireless Brain Implant
A salt-grain-sized neural implant can record and transmit brain activity wirelessly for extended periods. Researchers at Cornell University, working with collaborators, have created an extremely small neural implant that can sit on a grain of [...]
Scientists Develop a New Way To See Inside the Human Body Using 3D Color Imaging
A newly developed imaging method blends ultrasound and photoacoustics to capture both tissue structure and blood-vessel function in 3D. By blending two powerful imaging methods, researchers from Caltech and USC have developed a new way to [...]
Brain waves could help paralyzed patients move again
People with spinal cord injuries often lose the ability to move their arms or legs. In many cases, the nerves in the limbs remain healthy, and the brain continues to function normally. The loss of [...]
Scientists Discover a New “Cleanup Hub” Inside the Human Brain
A newly identified lymphatic drainage pathway along the middle meningeal artery reveals how the human brain clears waste. How does the brain clear away waste? This task is handled by the brain’s lymphatic drainage [...]
New Drug Slashes Dangerous Blood Fats by Nearly 40% in First Human Trial
Scientists have found a way to fine-tune a central fat-control pathway in the liver, reducing harmful blood triglycerides while preserving beneficial cholesterol functions. When we eat, the body turns surplus calories into molecules called [...]
A Simple Brain Scan May Help Restore Movement After Paralysis
A brain cap and smart algorithms may one day help paralyzed patients turn thought into movement—no surgery required. People with spinal cord injuries often experience partial or complete loss of movement in their arms [...]
Plant Discovery Could Transform How Medicines Are Made
Scientists have uncovered an unexpected way plants make powerful chemicals, revealing hidden biological connections that could transform how medicines are discovered and produced. Plants produce protective chemicals called alkaloids as part of their natural [...]
Scientists Develop IV Therapy That Repairs the Brain After Stroke
New nanomaterial passes the blood-brain barrier to reduce damaging inflammation after the most common form of stroke. When someone experiences a stroke, doctors must quickly restore blood flow to the brain to prevent death. [...]















