Swansea University scientists have uncovered potentially dangerous chemical pollutants that are released from disposable face masks when submerged in water.

The research reveals high levels of pollutants, including lead, antimony, and copper, within the silicon-based and plastic fibres of common disposable face masks.

The work is supported by the Institute for Innovative Materials, Processing and Numerical Technologies (IMPACT) and the SPECIFIC Innovation & Knowledge Centre

Project lead Dr Sarper Sarp of Swansea University College of Engineering said:

“All of us need to keep wearing masks as they are essential in ending the pandemic. But we also urgently need more research and regulation on mask production, so we can reduce any risks to the environment and human health”.

Outlined in a recent paper, the tests carried out by the research team used a variety of masks – from standard plain face masks to novelty and festive masks for children with many currently being sold in UK retail outlets.

The rise in single-use masks, and the associated waste, due to the COVID-19 pandemic has been documented as a new cause of pollution. The study aimed to explore this direct link – with investigations to identify the level of toxic substances present.

The findings reveal significant levels of pollutants in all the masks tested – with micro/nano particles and heavy metals released into the water during all tests. Researchers conclude this will have a substantial environmental impact and, in addition, raise the question of the potential damage to public health – warning that repeated exposure could be hazardous as the substances found have known links to cell death, genotoxicity and cancer formation.

To combat this, the team advise further research and subsequent regulations be put in place in the manufacturing and testing process.

Image Credit:    Envato

Post by Amanda Scott, NA CEO.  Follow her on twitter @tantriclens

Thanks to Heinz V. Hoenen.  Follow him on twitter: @HeinzVHoenen

Read the Article

News

Green Method to Make Nanoparticles and Ultrafine Powder

A novel freeze-dissolving approach has been devised that offers greater efficiency and sustainability compared to the classic freeze-drying process to make superfine powder or nanoparticles.​​​​​​​ In the research published in the journal ACS Sustainable Chemistry & Engineering, sphere-shaped [...]

Could gold nanoparticles help treat cancer?

Gold nanoparticles are minuscule particles made of gold. From drug and gene delivery to photothermal and photodynamic therapies to screening and diagnostic tests to radiation therapy, X-ray imaging and CT scans, these small particles [...]