The new findings have the potential to improve our understanding of cancers and a multitude of other diseases.
Researchers at La Jolla Institute for Immunology (LJI) have finally discovered the role of an enzyme named O-GlcNAc transferase (OGT) in maintaining cell health. The findings, which were published in the Proceedings of the National Academies of Sciences, offer crucial insights into cellular biology and could pave the way for significant medical breakthroughs.
“Many diseases are related to OGT function,” says LJI Instructor Xiang Li, Ph.D., who served as the first author for the new study. “For example, many studies have shown abnormal OGT function in cancer, diabetes, and cardiovascular disease.”
The new study, spearheaded by Li and co-led by LJI Professor Anjana Rao, Ph.D., and LJI Assistant Professor Samuel Myers, Ph.D., is the first to show that OGT controls cell survival by regulating a critical protein called mTOR.
“OGT is important for every cell in the body,” explains Myers. “Thanks to this research, we now have a model we can use for future studies into what each part of OGT does.”
The one and only OGT
OGT is an enzyme called a transferase. This type of enzyme carries out a job called glycosylation, where sugar molecules are added to recently synthesized proteins. OGT is unique among transferases because it modifies proteins within cells, rather than proteins on the cell surface or secreted proteins.
In fact, OGT’s job of glycosylation is so important that embryonic cells will die without it. But until now, scientists were in the dark as to why.
As Myers explains, the essential nature of OGT is what makes it so hard to study. Scientists usually study enzymes and other proteins by developing cells that lack the genes for those proteins. They generate the new, dysfunctional cells and then investigate how things have gone wrong.
But with OGT, that kind of experiment would be over before it even began. Because there is only one OGT, scientists haven’t been able to delete it or reduce its function without simply killing the very cells they need to study. “We knew OGT was essential for cell survival, but for more than 20 years we didn’t know why,” says Li.
For the new study, Li was able to get around that problem by using an inducible system to delete the OGT gene. He worked with mouse embryonic stem cells and then used an inducible version of a protein known as Cre to delete the gene for OGT. This meant that the cells could grow normally until the scientists decided to activate the process, after which cells that had lost the OGT gene began to stop proliferating and die.
The team found that deleting the gene for OGT led to an abnormal increase in the function of a key enzyme called mTOR that regulates cell metabolism. Deleting the gene for OGT also fueled an essential but potentially dangerous process in cells called mitochondrial oxidative phosphorylation.
Why is mitochondrial oxidative phosphorylation so dangerous? This process in cells is part of a delicate pathway that allows cells to produce ATP (the molecule that powers a cell). ATP can be produced by glycolysis as well as by mitochondrial oxidative phosphorylation, and disturbing this balance can have devastating consequences for cells.
Fortunately, OGT safeguards mTOR activity and mitochondrial fitness by keeping protein synthesis running smoothly and regulating amino acid levels within cells. Importantly, the researchers discovered the same protective role for OGT in CD8+ T cells, which suggests the enzyme works the same way across mammalian cell types, not just in mouse embryonic stem cells.
Researchers to the rescue
Even the dysfunctional cells lacking OGT weren’t doomed forever. The scientists were able to “rescue” the dysfunctional cells using a new cutting-edge technology for gene editing called CRISPR/Cas9.
By asking whether a second gene in the mouse embryonic stem cells would restore the growth of cells lacking OGT, Li found that mTOR and mitochondrial oxidative phosphorylation were hyperactivated in cells lacking OGT, and the cells could be rescued by damping down their function.
This is good news for scientists hoping to learn more about OGT’s role in the body. “Now that we can delete the gene for OGT while keeping cells alive, we can try restoring just pieces of OGT to learn more about how OGT works to keep cells alive,” says Myers.
Li says his new discovery may allow researchers to further study the role of OGT and potentially find therapeutic targets to counteract abnormal activity. “In the future, we hope our research could help shed light on issues related to dysfunctional OGT in cancer and other diseases,” Li says.

News
Does Space-Time Really Exist?
Is time something that flows — or just an illusion? Exploring space-time as either a fixed “block universe” or a dynamic fabric reveals deeper mysteries about existence, change, and the very nature of reality. [...]
Unlocking hidden soil microbes for new antibiotics
Most bacteria cannot be cultured in the lab-and that's been bad news for medicine. Many of our frontline antibiotics originated from microbes, yet as antibiotic resistance spreads and drug pipelines run dry, the soil [...]
By working together, cells can extend their senses beyond their direct environment
The story of the princess and the pea evokes an image of a highly sensitive young royal woman so refined, she can sense a pea under a stack of mattresses. When it comes to [...]
Overworked Brain Cells May Hold the Key to Parkinson’s
Scientists at Gladstone Institutes uncovered a surprising reason why dopamine-producing neurons, crucial for smooth body movements, die in Parkinson’s disease. In mice, when these neurons were kept overactive for weeks, they began to falter, [...]
Old tires find new life: Rubber particles strengthen superhydrophobic coatings against corrosion
Development of highly robust superhydrophobic anti-corrosion coating using recycled tire rubber particles. Superhydrophobic materials offer a strategy for developing marine anti-corrosion materials due to their low solid-liquid contact area and low surface energy. However, [...]
This implant could soon allow you to read minds
Mind reading: Long a science fiction fantasy, today an increasingly concrete scientific goal. Researchers at Stanford University have succeeded in decoding internal language in real time thanks to a brain implant and artificial intelligence. [...]
A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells
Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and [...]
This Common Sleep Aid May Also Protect Your Brain From Alzheimer’s
Lemborexant and similar sleep medications show potential for treating tau-related disorders, including Alzheimer’s disease. New research from Washington University School of Medicine in St. Louis shows that a commonly used sleep medication can restore normal sleep patterns and [...]
Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy
A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]
Nanoparticle-Based Vaccine Shows Promise in Fighting Cancer
In a study published in OncoImmunology, researchers from the German Cancer Research Center and Heidelberg University have created a therapeutic vaccine that mobilizes the immune system to target cancer cells. The researchers demonstrated that virus peptides combined [...]
Quantitative imaging method reveals how cells rapidly sort and transport lipids
Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and [...]
Ancient DNA reveals cause of world’s first recorded pandemic
Scientists have confirmed that the Justinian Plague, the world’s first recorded pandemic, was caused by Yersinia pestis, the same bacterium behind the Black Death. Dating back some 1,500 years and long described in historical texts but [...]
“AI Is Not Intelligent at All” – Expert Warns of Worldwide Threat to Human Dignity
Opaque AI systems risk undermining human rights and dignity. Global cooperation is needed to ensure protection. The rise of artificial intelligence (AI) has changed how people interact, but it also poses a global risk to human [...]
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]
Long COVID Symptoms Are Closer To A Stroke Or Parkinson’s Disease Than Fatigue
When most people get sick with COVID-19 today, they think of it as a brief illness, similar to a cold. However, for a large number of people, the illness doesn't end there. The World [...]