A discovery led by OHSU was made possible by years of study conducted by University of Portland undergraduates.
Scientists have discovered a natural compound that can halt a key process involved in the progression of certain cancers and demyelinating diseases—conditions that damage the protective myelin sheath surrounding neurons, such as multiple sclerosis (MS).
A study published in the Journal of Biological Chemistry identified a plant-derived flavonoid called sulfuretin as an inhibitor of an enzyme linked to both MS and cancer. The research, conducted in cell models at Oregon Health & Science University, demonstrated that sulfuretin effectively blocked the enzyme's activity. The next phase of research will involve testing the compound in animal models to evaluate its therapeutic potential, effectiveness, and possible side effects in treating cancer and neurodegenerative diseases like MS.
A Potentially Wide-Reaching Treatment
"We think this is a drug that could have impact in a lot of different areas," said Larry Sherman, Ph.D., professor in the Division of Neuroscience at OHSU's Oregon National Primate Research Center.
The researchers found that sulfuretin, along with a pair of synthetic compounds that were also tested in live cells, inhibited the activity of a particular type of enzyme known as a hyaluronidase, which naturally degrades hyaluronic acid. That's important because when hyaluronic acid is broken down into fragments, it is known to cause problems in at least two ways:
- Forestalls myelin repair: It prevents the maturation of oligodendrocytes, which are cells that produce myelin. Myelin is the protective sheath covering each nerve cell's axon — the threadlike portion of a cell that transmits electrical signals between cells. Damage to myelin is associated with MS, stroke, brain injuries, and certain forms of dementia. In addition, delay in myelination can affect infants born prematurely, leading to brain damage or cerebral palsy.
- Allows cancer cells to proliferate: In cancerous tumors, hyaluronidase activity can allow cancer cells to proliferate unchecked by normal cellular death. "Now we have an inhibitor that could actually stop that," said Sherman, who is also a professor of cell, developmental, and cancer biology in the OHSU School of Medicine.
The new research focuses on inhibiting a specific type of hyaluronidase known as cell migration-inducing and hyaluronan-binding protein, or CEMIP.
In addition to MS and cancer, CEMIP is implicated in a range of disorders, including osteoarthritis, skin infections, brain injury caused by heavy alcohol use, and possibly other neurodevelopment disorders, including Alzheimer's disease. The study indicates its activity appears to be inhibited by sulfuretin.
Molecules in flowers
The discovery came after years of undergraduates painstakingly screening plant compounds in the lab of co-author Angela Hoffman, Ph.D., a longtime and now-retired professor of chemistry at the University of Portland.
"Over the years, her students have been grinding up these flowers, extracting molecules, and testing to see if any of them blocked hyaluronidase activity," Sherman said. "Finally, a couple of years ago, they found a compound that was promising."
Alec Peters, a graduate student in Sherman's lab at OHSU, found that this compound blocked CEMIP activity in a tumor cell line and in oligodendrocyte progenitor cells. Oligodendrocytes generate myelin.
Hoffman, a nun and chemistry professor who earlier this year retired from the University of Portland after 35 years to lead her convent, began collaborating with Sherman a decade ago. Over that time, she said, hundreds of undergraduate students worked on breaking down dozens of plants to their molecular essence and then testing to see whether any of the compounds worked to neutralize CEMIP.
The new publication validates the students' diligent work over many years, she said.
"Directing the students to be able to do this kind of research helps them in their careers," Hoffman said. "This discovery could be useful for Alzheimer's or other neurodegenerative conditions. As long as the underlying problem relates to hyaluronic acid being broken apart, this could be helpful for people."
Reference: "Distinct chemical structures inhibit the CEMIP hyaluronidase and promote oligodendrocyte progenitor cell maturation" by Alec Peters, Fatima Banine, Kanon Yasuhara, Angela Hoffman, Prashant K. Basappa, Lily Metri, Ava Gunning, Jake Huffman, Clinton C. VanCampen, Stephen A. Shock and Larry S. Back, 24 October 2024, Journal of Biological Chemistry.
DOI: 10.1016/j.jbc.2024.107916
The research was supported by the National Institutes of Health, grant award P51 OD011902 for the operation of the Oregon National Primate Research Center at OHSU; Congressionally Directed Medical Research Programs grant award MS160144; the National Multiple Sclerosis Society, grant award RG 4843A5/1; the National Institute of Neurological Disorders and Stroke of the NIH, grant award NS054044; and the National Institute of Alcohol Abuse and Alcoholism of the NIH, grant award P60AA010760.
News
A Forgotten Molecule Could Revive Failing Antifungal Drugs and Save Millions of Lives
Scientists have uncovered a way to make existing antifungal drugs work again against deadly, drug-resistant fungi. Fungal infections claim millions of lives worldwide each year, and current medical treatments are failing to keep pace. [...]
Scientists Trap Thyme’s Healing Power in Tiny Capsules
A new micro-encapsulation breakthrough could turn thyme’s powerful health benefits into safer, smarter nanodoses. Thyme extract is often praised for its wide range of health benefits, giving it a reputation as a natural medicinal [...]
Scientists Develop Spray-On Powder That Instantly Seals Life-Threatening Wounds
KAIST scientists have created a fast-acting, stable powder hemostat that stops bleeding in one second and could significantly improve survival in combat and emergency medicine. Severe blood loss remains the primary cause of death from [...]
Oceans Are Struggling To Absorb Carbon As Microplastics Flood Their Waters
New research points to an unexpected way plastic pollution may be influencing Earth’s climate system. A recent study suggests that microscopic plastic pollution is reducing the ocean’s capacity to take in carbon dioxide, a [...]
Molecular Manufacturing: The Future of Nanomedicine – New book from Frank Boehm
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
New Book! NanoMedical Brain/Cloud Interface – Explorations and Implications
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]
Global Health Care Equivalency in the Age of Nanotechnology, Nanomedicine and Artificial Intelligence
A new book by Frank Boehm, NanoappsMedical Inc. Founder. This groundbreaking volume explores the vision of a Global Health Care Equivalency (GHCE) system powered by artificial intelligence and quantum computing technologies, operating on secure [...]
Miller School Researchers Pioneer Nanovanilloid-Based Brain Cooling for Traumatic Injury
A multidisciplinary team at the University of Miami Miller School of Medicine has developed a breakthrough nanodrug platform that may prove beneficial for rapid, targeted therapeutic hypothermia after traumatic brain injury (TBI). Their work, published in ACS [...]
COVID-19 still claims more than 100,000 US lives each year
Centers for Disease Control and Prevention researchers report national estimates of 43.6 million COVID-19-associated illnesses and 101,300 deaths in the US during October 2022 to September 2023, plus 33.0 million illnesses and 100,800 deaths [...]
Nanomedicine in 2026: Experts Predict the Year Ahead
Progress in nanomedicine is almost as fast as the science is small. Over the last year, we've seen an abundance of headlines covering medical R&D at the nanoscale: polymer-coated nanoparticles targeting ovarian cancer, Albumin recruiting nanoparticles for [...]
Lipid nanoparticles could unlock access for millions of autoimmune patients
Capstan Therapeutics scientists demonstrate that lipid nanoparticles can engineer CAR T cells within the body without laboratory cell manufacturing and ex vivo expansion. The method using targeted lipid nanoparticles (tLNPs) is designed to deliver [...]
The Brain’s Strange Way of Computing Could Explain Consciousness
Consciousness may emerge not from code, but from the way living brains physically compute. Discussions about consciousness often stall between two deeply rooted viewpoints. One is computational functionalism, which holds that cognition can be [...]
First breathing ‘lung-on-chip’ developed using genetically identical cells
Researchers at the Francis Crick Institute and AlveoliX have developed the first human lung-on-chip model using stem cells taken from only one person. These chips simulate breathing motions and lung disease in an individual, [...]
Cell Membranes May Act Like Tiny Power Generators
Living cells may generate electricity through the natural motion of their membranes. These fast electrical signals could play a role in how cells communicate and sense their surroundings. Scientists have proposed a new theoretical [...]
This Viral RNA Structure Could Lead to a Universal Antiviral Drug
Researchers identify a shared RNA-protein interaction that could lead to broad-spectrum antiviral treatments for enteroviruses. A new study from the University of Maryland, Baltimore County (UMBC), published in Nature Communications, explains how enteroviruses begin reproducing [...]
New study suggests a way to rejuvenate the immune system
Stimulating the liver to produce some of the signals of the thymus can reverse age-related declines in T-cell populations and enhance response to vaccination. As people age, their immune system function declines. T cell [...]















