A new approach to image analysis has uncovered how cancer cells manipulate their size as a means of resisting treatment.
Researchers have discovered that cancer cells are capable of either shrinking or super-size themselves in order to survive challenges within their environment, such as drug treatment.
By combining biochemical profiling technologies with mathematical analyses, scientists from The Institute of Cancer Research in London were able to uncover the mechanisms by which genetic changes can result in variations in the size of cancer cells. These findings may be utilized in the development of novel treatments.
The researchers believe smaller cells could be more vulnerable to DNA-damaging agents like chemotherapy combined with targeted drugs, while larger cancer cells might respond better to immunotherapy.
The skin cancer melanoma is driven by two different genetic mutations – 60 percent of cases are caused by a BRAF gene mutation, while 20 to 30 percent of cases are caused by an NRAS mutation.
The researchers set out to investigate the differences in size and shape of skin cancer cells harboring the two mutations, by using mathematical algorithms to analyze huge amounts of data on DNA and proteins.
The major difference was cell size. BRAF-mutant cancer cells were very small whereas NRAS-mutant cancer cells were much bigger. Drug-resistant NRAS cells were even bigger.
Smaller cells appear to be able to tolerate higher levels of DNA damage, as they are very concentrated with proteins that repair DNA – like PARP, BRCA1, or ATM1 proteins.
The ICR researchers believe that this could make them more vulnerable to drugs like PARP inhibitors – drugs blocking proteins responsible for repairing DNA damage – especially when combined with DNA-damaging agents such as chemotherapy.
In contrast, the larger NRAS-mutant cancer cells contained damage to their DNA instead of repairing it, accumulating mutations, and enlarging. These larger cells were not as reliant on DNA repair machinery, so using chemotherapy and PARP inhibitors against them might not be as effective.
Scientists believe larger cells could be more responsive to immunotherapy – because their larger number of mutations could make them look more alien to the body. They are already exploring this theory with further studies.
The researchers believe BRAF and NRAS mutations may be driving the differences in cell size by regulating levels of a protein known as CCND1 – which is involved in cell division, growth, and maintaining the cytoskeleton – and its interactions with other proteins.
While the study focused on skin cancer cells, researchers suspect that this size-shifting ability and its impact on treatment response is common to multiple cancer types. They have already identified similar mechanisms in breast cancer and are now investigating whether the findings could apply to head and neck cancers.
The discovery provides new insight into how the size of cancer cells affects the overall disease, allowing for better predictions of how people with cancer will respond to different treatments simply by analyzing cell size.
Existing drugs could even be used to force cancer cells into a desired size prior to treatments like immunotherapy or radiotherapy, which could improve their effectiveness.
Study leader Professor Chris Bakal, Professor of Cancer Morphodynamics at The Institute of Cancer Research, London, said: "We think of cancer as out of control and unpredictable, but we used image analysis and proteomics to show for the first time that certain genetic and protein changes lead to a controlled change in the size of cancer cells. Cancer cells can shrink or grow to enhance their ability to repair or contain DNA damage, and that in turn can make them resistant to certain treatments.
He continues, "We think our research has real diagnostic potential. By looking at cell size, pathologists could predict whether a drug will work, or if the cells will be resistant. In the future, it might even be possible to use AI to help guide the pathologist, by making a rapid assessment about the size of cells and so the treatments that are most likely to work. We also hope our discovery will lead to new treatment strategies – for example creating drugs to target the proteins that regulate cell size."
Professor Kristian Helin, Chief Executive of The Institute of Cancer Research, London, said: "This intriguing, fundamental study provides a correlation between genetic alterations in skin cancer cells and cell size. It opens the potential of using genetic alterations and cell size as biomarkers for how skin cancer will respond to treatments. It's particularly exciting that cell size could also be an important biomarker for how other cancers, such as breast or head and neck cancers, respond to treatments."
News
This Vaccine Stops Bird Flu Before It Reaches the Lungs
A new nasal spray vaccine could stop bird flu at the door — blocking infection, reducing spread, and helping head off the next pandemic. Since first appearing in the United States in 2014, H5N1 [...]
These two viruses may become the next public health threats, scientists say
Two emerging pathogens with animal origins—influenza D virus and canine coronavirus—have so far been quietly flying under the radar, but researchers warn conditions are ripe for the viruses to spread more widely among humans. [...]
COVID-19 viral fragments shown to target and kill specific immune cells
COVID-19 viral fragments shown to target and kill specific immune cells in UCLA-led study Clues about extreme cases and omicron’s effects come from a cross-disciplinary international research team New research shows that after the [...]
Smaller Than a Grain of Salt: Engineers Create the World’s Tiniest Wireless Brain Implant
A salt-grain-sized neural implant can record and transmit brain activity wirelessly for extended periods. Researchers at Cornell University, working with collaborators, have created an extremely small neural implant that can sit on a grain of [...]
Scientists Develop a New Way To See Inside the Human Body Using 3D Color Imaging
A newly developed imaging method blends ultrasound and photoacoustics to capture both tissue structure and blood-vessel function in 3D. By blending two powerful imaging methods, researchers from Caltech and USC have developed a new way to [...]
Brain waves could help paralyzed patients move again
People with spinal cord injuries often lose the ability to move their arms or legs. In many cases, the nerves in the limbs remain healthy, and the brain continues to function normally. The loss of [...]
Scientists Discover a New “Cleanup Hub” Inside the Human Brain
A newly identified lymphatic drainage pathway along the middle meningeal artery reveals how the human brain clears waste. How does the brain clear away waste? This task is handled by the brain’s lymphatic drainage [...]
New Drug Slashes Dangerous Blood Fats by Nearly 40% in First Human Trial
Scientists have found a way to fine-tune a central fat-control pathway in the liver, reducing harmful blood triglycerides while preserving beneficial cholesterol functions. When we eat, the body turns surplus calories into molecules called [...]
A Simple Brain Scan May Help Restore Movement After Paralysis
A brain cap and smart algorithms may one day help paralyzed patients turn thought into movement—no surgery required. People with spinal cord injuries often experience partial or complete loss of movement in their arms [...]
Plant Discovery Could Transform How Medicines Are Made
Scientists have uncovered an unexpected way plants make powerful chemicals, revealing hidden biological connections that could transform how medicines are discovered and produced. Plants produce protective chemicals called alkaloids as part of their natural [...]
Scientists Develop IV Therapy That Repairs the Brain After Stroke
New nanomaterial passes the blood-brain barrier to reduce damaging inflammation after the most common form of stroke. When someone experiences a stroke, doctors must quickly restore blood flow to the brain to prevent death. [...]
Analyzing Darwin’s specimens without opening 200-year-old jars
Scientists have successfully analyzed Charles Darwin's original specimens from his HMS Beagle voyage (1831 to 1836) to the Galapagos Islands. Remarkably, the specimens have been analyzed without opening their 200-year-old preservation jars. Examining 46 [...]
Scientists discover natural ‘brake’ that could stop harmful inflammation
Researchers at University College London (UCL) have uncovered a key mechanism that helps the body switch off inflammation—a breakthrough that could lead to new treatments for chronic diseases affecting millions worldwide. Inflammation is the [...]
A Forgotten Molecule Could Revive Failing Antifungal Drugs and Save Millions of Lives
Scientists have uncovered a way to make existing antifungal drugs work again against deadly, drug-resistant fungi. Fungal infections claim millions of lives worldwide each year, and current medical treatments are failing to keep pace. [...]
Scientists Trap Thyme’s Healing Power in Tiny Capsules
A new micro-encapsulation breakthrough could turn thyme’s powerful health benefits into safer, smarter nanodoses. Thyme extract is often praised for its wide range of health benefits, giving it a reputation as a natural medicinal [...]
Scientists Develop Spray-On Powder That Instantly Seals Life-Threatening Wounds
KAIST scientists have created a fast-acting, stable powder hemostat that stops bleeding in one second and could significantly improve survival in combat and emergency medicine. Severe blood loss remains the primary cause of death from [...]















