First insights into engineering crystal growth by atomically precise metal nanoclusters have been achieved in a study performed by researchers in Singapore, Saudi Arabia and Finland. The work was published in Nature Chemistry (“Supercrystal engineering of atomically precise gold nanoparticles promoted by surface dynamics”). | |
Ordinary solid matter consists of atoms organized in a crystal lattice. The chemical character of the atoms and lattice symmetry define the properties of the matter, for instance, whether it is a metal, a semiconductor or and electric insulator. | |
The lattice symmetry may be changed by ambient conditions such as temperature or high pressure, which can induce structural transitions and transform even an electric insulator to an electric conductor, that is, a metal. | |
Larger identical entities such as nanoparticles or atomically precise metal nanoclusters can also organize into a crystal lattice, to form so called meta-materials. However, information on how to engineer the growth of such materials from their building blocks has been scarce since the crystal growth is a typical self-assembling process. | |
Now, first insights into engineering crystal growth by atomically precise metal nanoclusters have been achieved in a study performed by researchers in Singapore, Saudi Arabia and Finland. They synthesized metal clusters consisting of only 25 gold atoms, one nanometer in diameter. |
These clusters are soluble in water due to the ligand molecules that protect the gold. This cluster material is known to self-assemble into well-defined close packed single crystals when the water solvent is evaporated. | |
However, the researcher found a novel concept to regulate the crystal growth by adding tetra-alkyl-ammonium molecular ions in the solvent. These ions affect the surface chemistry of the gold clusters, and their size and concentration were observed to have an impact on the size, shape, and morphology of the formed crystals. | |
Remarkably, high-resolution electron microscopy images of some of the crystals revealed that they consist of polymeric chains of clusters with four-gold-atom interparticle links (see the Figure). The demonstrated surface chemistry opens now new ways to engineer metal cluster -based meta-materials for investigations of their electronic and optical properties. | |
The cluster materials were synthesized in the National University of Singapore, the electron microscopy imaging was done at the King Abdullah University of Science and Technology in Saud Arabia, and the theoretical modelling was done at the University of Jyväskylä, Finland. |
Source: University of Jyväskylä |
Image Credit: King Abdullah University of Science and Technology in Saud Arabia

News
Cardiovascular Crystal Ball: New Tool Predicts Future Heart Disease Risk
Faculty members at the UM School of Medicine have created a cutting-edge tool that enables the early identification and assessment of risks in vulnerable patients. Heart disease, being the leading cause of death globally, [...]
Scientists analyze a single atom with X-rays for the first time
In the most powerful X-ray facilities in the world, scientists can analyze samples so small they contain only 10,000 atoms. Smaller sizes have proved exceedingly difficult to achieve, but a multi-institutional team has scaled [...]
AI Demonstrates Superior Performance in Predicting Breast Cancer
AI algorithms outperformed traditional clinical risk models in a large-scale study, predicting five-year breast cancer risk more accurately. These models use mammograms as the single data source, offering potential advantages in individualizing patient care [...]
Stanford Medicine Reveals: Tiny DNA Circles Defying Genetic Laws Drive Cancer Formation
Tiny circles of DNA harbor cancer-associated oncogenes and immunomodulatory genes promoting cancer development. They arise during the transformation from pre-cancer to cancer, say Stanford Medicine-led team. Tiny circles of DNA that defy the accepted laws of [...]
Death to Blood Cancer Cells: New Drug Combination Could Revive the Power of Leading Treatment
Future clinical trials will be conducted to investigate whether the combination of chloroquine and venetoclax can prevent disease recurrence. Although new drugs have been developed to induce cancer cell death in individuals with acute [...]
Illuminating Science: X-Rays Visualize How One of Nature’s Strongest Bonds Breaks
Scientists have deciphered how an activated catalyst breaks down the strong carbon-hydrogen bonds in potent greenhouse gas methane, according to a study published in Science. Using advanced X-ray technology and quantum-chemical calculations, they tracked the [...]
Using magnetic nanoparticles as a rapid test for sepsis
Qun Ren, an Empa researcher, and her team are currently developing a diagnostic procedure that can rapidly detect life-threatening blood poisoning caused by staphylococcus bacteria. Staphylococcal sepsis is fatal in up to 40% of [...]
Team develops nanoparticles to deliver brain cancer treatment
University of Queensland researchers have developed a nanoparticle to take a chemotherapy drug into fast growing, aggressive brain tumors. Research team lead Dr. Taskeen Janjua from UQ's School of Pharmacy said the new silica [...]
Tumor Avatars – A New Approach to Personalized Cancer Treatment
A team from the University of Geneva (UNIGE) has devised a novel method for customizing treatments by testing them on artificial tumors. Determining the optimal treatment for colon cancer can be challenging as each [...]
STING Like a Bee: MIT’s Revolutionary Approach to Cancer Immunotherapy
A cancer vaccine combining checkpoint blockade therapy and a STING-activating drug eliminates tumors and prevents recurrence in mice. MIT researchers have engineered a therapeutic cancer vaccine that targets the STING pathway, vital for immune response [...]
AI Battles Superbugs: Helps Find New Antibiotic Drug To Combat Drug-Resistant Infections
The machine-learning algorithm identified a compound that kills Acinetobacter baumannii, a bacterium that lurks in many hospital settings. Using an artificial intelligence algorithm, researchers at MIT and McMaster University have identified a new antibiotic that can kill a [...]
Cancer and AI – Can ChatGPT Be Trusted?
A study published in the Journal of The National Cancer Institute Cancer Spectrum delved into the increasing use of chatbots and artificial intelligence (AI) in providing cancer-related information. The researchers discovered that these digital resources accurately [...]
Breathing New Life: Oxygen Therapy Improves Heart Function in Long COVID Patients
A small trial has found that hyperbaric oxygen therapy (HBOT) may help restore proper heart function in patients with post-COVID syndrome, with participants in the HBOT group experiencing a significant increase in global longitudinal [...]
Wireless Brain-Spine Interface: A Leap Towards Reversing Paralysis
Summary: In a pioneering study, researchers designed a wireless brain-spine interface enabling a paralyzed man to walk naturally again. The ‘digital bridge’ comprises two electronic implants — one on the brain and another on the [...]
New study reveals a gel that promises to wipe out brain cancer for good
An anti-cancer gel promises to wipe out glioblastoma permanently, a feat that's never been accomplished by any drug or surgery. So what makes this gel so special? Scientists at Johns Hopkins University (JHU) have [...]
New production process for therapeutic nanovesicles
Particles known as extracellular vesicles play a vital role in communication between cells and in many cell functions. Released by cells into their environment, these “membrane particles” consist of a cellular membrane carrying a [...]