Universitat Autònoma de Barcelona (UAB) researchers have developed a magnetic material capable of imitating the way the brain stores information. The material makes it possible to emulate the synapses of neurons and mimic, for the first time, the learning that occurs during deep sleep. | |
Neuromorphic computing is a new computing paradigm in which the behavior of the brain is emulated by mimicking the main synaptic functions of neurons. Among these functions is neuronal plasticity: the ability to store information or forget it depending on the duration and repetition of the electrical impulses that stimulate neurons, a plasticity that would be linked to learning and memory. | |
Among the materials that mimic neuron synapses, memresistive materials, ferroelectrics, phase change memory materials, topological insulators and, more recently, magneto-ionic materials stand out. In the latter, changes in the magnetic properties are induced by the displacement of ions within the material caused by the application of an electric field. | |
In these materials it is well known how the magnetism is modulated when applying the electric field, but the evolution of magnetic properties when voltage is stopped (that is, the evolution after the stimulus) is difficult to control. This makes it complicated to emulate some brain-inspired functions, such as maintaining the efficiency of learning that takes place even while the brain is in a state of deep sleep (i.e., without external stimulation). | |
This study (Materials Horizons, “Frequency-dependent stimulated and post-stimulated voltage control of magnetism in transition metal nitrides: towards brain-inspired magneto-ionics”), led by researchers from the UAB Department of Physics Jordi Sort and Enric Menéndez, in collaboration with the ALBA Synchrotron, the Catalan Institute of Nanoscience and Nanotechnology (ICN2) and the ICMAB, proposes a new way of controlling the evolution of magnetization both in the stimulated and in the post-stimulus states. | |
The researchers have developed a material based on a thin layer of cobalt mononitride (CoN) where, by applying an electric field, the accumulation of N ions at the interface between the layer and a liquid electrolyte in which the layer has been placed can be controlled. | |
“The new material works with the movement of ions controlled by electrical voltage, in a manner analogous to our brain, and at speeds similar to those produced in neurons, of the order of milliseconds,” explain ICREA research professor Jordi Sort and Serra Húnter Tenure-track Professor Enric Menéndez. “We have developed an artificial synapse that in the future may be the basis of a new computing paradigm, alternative to the one used by current computers”, Sort and Menéndez point out. | |
By applying voltage pulses, it has been possible to emulate, in a controlled way, processes such as memory, information processing, information retrieval and, for the first time, the controlled updating of information without applied voltage. This control has been achieved by modifying the thickness of the cobalt mononitride layers (which determines the speed of the ions motion), and the frequency of the pulses. | |
The arrangement of the material allows the magnetoionic properties to be controlled not only when the voltage is applied but also, for the first time, when the voltage is removed. Once the external voltage stimulus disappears, the magnetization of the system can be reduced or increased, depending on the thickness of the material and the protocol how the voltage has been previously applied. | |
This new effect opens a whole range of opportunities for new neuromorphic computing functions. It offers a new logic function that allows, for example, the possibility of mimicking the neural learning that occurs after brain stimulation, when we sleep profoundly. This functionality cannot be emulated by any other type of existing neuromorphic materials. | |
“When the thickness of the cobalt mononitride layer is below 50 nanometers and with a voltage applied at a frequency greater than 100 cycles per second, we have managed to emulate an additional logic function: once the voltage is applied, the device can be programmed to learn or to forget, without the need for any additional input of energy, mimicking the synaptic functions that take place in the brain during deep sleep, when information processing can continue without applying any external signal”, highlight Jordi Sort and Enric Menendez. |

News
A Promising New Pathway in the Battle Against Aggressive Prostate Cancer
Neuronal Molecule Makes Prostate Cancer More Aggressive Researchers discover a potential therapeutic avenue against an aggressive form of prostate cancer. Prostate cancer is the second most common cancer and the second leading cause of [...]
Nasal Vaccines: Stopping the COVID-19 Virus Before It Reaches the Lungs
The Pfizer-BioNTech and Moderna mRNA vaccines have played a large role in preventing deaths and severe infections from COVID-19. But researchers are still in the process of developing alternative approaches to vaccines to improve [...]
NASA Tracking a Huge, Growing Anomaly in Earth’s Magnetic Field – with video
NASA is actively monitoring a strange anomaly in Earth's magnetic field: a giant region of lower magnetic intensity in the skies above the planet, stretching out between South America and southwest Africa. This vast, developing [...]
New, Better Models Show How Infectious Diseases Like COVID-19 Spread
Infectious diseases such as COVID-19 can spread rapidly across the globe. Models that can predict how such diseases spread will strengthen national surveillance systems and improve public health decision-making. The COVID-19 pandemic has emphasized the [...]
Human Antibodies Discovered That Can Block Multiple Coronaviruses Including COVID-19
Results from a Scripps Research and UNC team pave the way for a vaccine and therapeutic antibodies that could be stockpiled to fight future coronavirus pandemics. A team of scientists from Scripps Research and [...]
Nanotechnology could be used to treat lymphedema
The human body is made up of thousands of tiny lymphatic vessels that ferry white blood cells and proteins around the body, like a superhighway of the immune system. It's remarkably efficient, but if [...]
DNA Nanotechnology Tools – From Design to Applications
Suite of DNA nanotechnology devices engineered to overcome specific bottlenecks in the development of new therapies, diagnostics, and understanding of molecular structures. DNA nanostructures with their potential for cell and tissue permeability, biocompatibility, and [...]
Regenerating bone with deer antler stem cells
Scientists from a collection of Chinese research institutions collaborated on a study of organ regeneration in mammals, finding deer antler blastema progenitor cells are a possible source of conserved regeneration cells in higher vertebrates. [...]
AI Takes On Cancer: Analysis of Mutations Could Lead to Improved Therapy
Cancer is a complex and diverse disease, and its range of associated mutations is vast. The combination of these genomic changes in an individual is referred to as their “mutational landscape.” These landscapes vary [...]
Exposing tumours to bacteria converts immune cells to cancer killers
New research on inflammation could lead to better treatments to improve outcomes for people with advanced or previously untreatable cancers. Introducing bacteria to a tumour’s microenvironment creates a state of acute inflammation that triggers [...]
Smart nanotechnology for more accurate delivery of insulin
More efficient and longer lasting glucose-responsive insulin that eliminates the need for people with type 1 diabetes to measure their glucose levels could be a step closer thanks to a Monash University-led project. Published [...]
Efficiently Harvesting Rare Earth Elements From Wastewater Using Exotic Bacteria
The novel strains of cyanobacteria exhibit a fast and efficient “biosorption” of rare earth elements, making recycling possible. Rare earth elements (REEs) are a set of 17 metallic elements that possess similar chemical properties. [...]
Resisting Treatment: Cancer Cells Shrink or Super-Size To Survive
A new approach to image analysis has uncovered how cancer cells manipulate their size as a means of resisting treatment. Researchers have discovered that cancer cells are capable of either shrinking or super-size themselves [...]
New Research Explains Why Children Avoid Severe COVID-19 Symptoms
According to new research, children exhibit a robust initial immune response to the coronavirus, however, they are unable to transfer this response to long-lasting memory T cells like adults do. Researchers led by scientists [...]
Scientists Unravel Protein Map of Mitochondria
A new study sheds light on the organization of proteins within mitochondria. Mitochondria, the “powerhouses” of cells, play a crucial role in the energy production of organisms and are involved in various metabolic and [...]
Mystifying Trapping Phenomenon: A Surprising Way To Catch a Microparticle
New insights could advance microfluidics and drug delivery systems. New study finds obstacles can trap rolling microparticles in fluid Through simulations and experiments, physicists attribute the trapping effect to stagnant pockets of fluid, created [...]