Bioinspired by tunicates and mussels, a Korean research team has created a “bomb-like” anticancer therapeutic agent that only destroys cancer cells.
The nanobomb produces heat in precise sites where near-IR (NIR) laser is irradiated to create nitric oxide gas, which has an anticancer effect and concurrently discharges anticancer drugs to accomplish the trimodal treatment of photothermal-gas-chemo-therapy.
The POSTECH research team was headed by Professor Hyung Joon Cha and Dr. Yeonsu Jeong (Department of Chemical Engineering) in partnership with Professor Yun Kee Jo’s team at Kyungpook National University (Department of Biomedical Convergence Science and Technology, School of Convergence).
The researchers engineered a photoactivatable adhesive nanobomb with mussel adhesive proteins (MAPs) and the catechol-vanadium complex of tunicates that involves light-associated energy conversion through electron transfer. The term ‘photoactivatable’ denotes the characteristic where properties vary based on the external light.
Since cancer manifests via multiple biological pathways, a process that integrates several treatments rather than one single treatment is generally employed. But it is challenging to deliver several therapeutic agents at once to a particular cancer site because of the large amount of fluid found in the human body.
Among such approaches, light-triggered photothermal therapy (PTT) employs nanoparticles of metals, synthetic polymers or carbon. However, their weak biodegradability, which can cause a hazard of systemic toxicity, and low photothermal conversion efficiency — the efficiency at which the captured light is turned to heat — render effective cancer treatment tough.
To this, the researchers developed nanoparticles by incorporating the catechol-vanadium complexes — which help electrons and light travel in tunicates — to the MAP. When these nanoparticles are exposed to the light from NIR lasers, the temperature can be increased to 50 degrees within 5 minutes, displaying exceptional photothermal conversion efficiency of around 50%.
These nanoparticles can be retained on cancer cells for an extended period owing to the robust adhesiveness of MAP. Furthermore, the excellent biocompatibility and biodegradability of proteinic nanoparticles resolve the safety matter of traditional light-responsive nanotherapeutics.
When the nanoparticles comprising a thermo-sensitive nitric oxide (NO) donor and an anticancer drug were irradiated using the near-IR (NIR) laser, NO gas and drugs were effectively discharged due to the photothermal effect, verifying their likelihood for use in a nanobomb.
It is generally tough to retain the anticancer effects of NO gas as it rapidly biometabolizes. However, the nanobomb can regulate the release of gas with light, which significantly raises the delivery efficiency of NO.
In preclinical testing in animal models, the tumor grew back 15 days after being treated with only a single photothemal treatment, whereas the therapeutic effectiveness was extended with trimodal treatments using nanobombs as no tumors were seen for around 1 month.
With a single nanoparticle, various site-specific therapeutic agents can be locally administered and multimodal treatments can be easily controlled with a single stimulus, which will be effective in treating cancer patients in the future.
Professor Hyung Joon Cha, Department of Chemical Engineering, Pohang University of Science and Technology
“This nanobomb can be applied not only to photothermal-gas-chemo-therapy, but also to the delivery of therapeutics including genes and antibodies or contrast agents, and therefore can be widely used according to the specific needs of the patient or the condition,” Professor Hyung Joon Cha added.
This research was chosen as the front cover paper of the December issue of Advanced Healthcare Materials, a well-known journal in the domain of materials science.
The research was performed with the support from the National Research Foundation grant funded by the Ministry of Science and ICT of Korea, the National Research Foundation grant funded by the Ministry of Education of Korea, and the Marine BioMaterials Research Center grant funded by the Ministry of Oceans and Fisheries of Korea.
The mussel adhesive protein technology has gone through a technology transfer to Nature Glutech Co., Ltd., and clinical trials will take place after procuring investigational new drug (IND) approvals.
News
Microplastics in the bloodstream may pose hidden risks to brain health
In a recent study published in the journal Science Advances, researchers investigated the impact of microplastics on blood flow and neurobehavioral functions in mice. Using advanced imaging techniques, they observed that microplastics obstruct cerebral blood [...]
AI Surveillance: New Study Exposes Hidden Risks to Your Privacy
A new mathematical model enhances the evaluation of AI identification risks, offering a scalable solution to balance technological benefits with privacy protection. AI tools are increasingly used to track and monitor people both online [...]
Permafrost Thaw: Unleashing Ancient Pathogens and Greenhouse Gases
Permafrost is a fascinating yet alarming natural phenomenon. It refers to ground that remains frozen for at least two consecutive years. Mostly found in polar regions like Siberia, Alaska, and Canada, permafrost plays a [...]
Frequent social media use tied to higher levels of irritability
A survey led by researchers from the Center for Quantitative Health at Massachusetts General Hospital and Harvard Medical School has analyzed the association between self-reported social media use and irritability among US adults. Frequent [...]
Australian oysters’ blood could hold key to fighting drug-resistant superbugs
Protein found in Sydney rock oysters’ haemolymph can kill bacteria and boost some antibiotics’ effectiveness, scientists discover An antimicrobial protein found in the blood of an Australian oyster could help in the fight against [...]
First U.S. H5N1 Death Sparks Urgency: Scientists Warn Bird Flu Is Mutating Faster Than Expected
A human strain of H5N1 bird flu isolated in Texas shows mutations enabling better replication in human cells and causing more severe disease in mice compared to a bovine strain. While the virus isn’t [...]
AI Breakthrough in Nanotechnology Shatters Limits of Precision
At TU Graz, a pioneering research group is leveraging artificial intelligence to drastically enhance the way nanostructures are constructed. They aim to develop a self-learning AI system that can autonomously position molecules with unprecedented precision, potentially [...]
How Missing Sleep Lets Bad Memories Haunt Your Mind
Research reveals that a lack of sleep can hinder the brain’s ability to suppress unwanted memories and intrusive thoughts, emphasizing the importance of restful sleep for mental health. Sleep deprivation has been found to [...]
WHO issues new warning over ‘mystery virus’ and calls for return of COVID restrictions
The World Health Organization (WHO) has called for the reinstatement of restrictions implemented during the COVID-19 pandemic as cases of human metapneumovirus (HMPV) continue to surge. While hospitals in China are overwhelmed with positive [...]
A Breath Away From a Cure: How Xenon Gas Could Transform Alzheimer’s Treatment
A breakthrough study highlights Xenon gas as a potential game-changer in treating Alzheimer’s disease, demonstrating its ability to mitigate brain damage and improve cognitive functions in mouse models. A forthcoming clinical trial aims to test its [...]
False Memories Under Fire: Surprising Science Behind What We Really Recall
New research challenges the ease of implanting false memories, highlighting flaws in the influential “Lost in the Mall” study. By reexamining the data from a previous study, researchers found that many supposed false memories [...]
Born Different? Cambridge Scientists Uncover Innate Sex Differences in Brains
Cambridge researchers found that sex differences in brain structure exist from birth, with males having more white matter and females more grey matter, highlighting early neurodiversity. Research from the Autism Research Centre at the University [...]
New study shows risk factors for dementia – virus causes deposits in the brain
Research into the causes of Alzheimer's is not yet complete. Now a new study shows that head trauma can activate herpes viruses and promote the disease. Frankfurt am Main – As a neurodegenerative disease, [...]
Are Machines Truly Thinking? Modern AI Systems Have Finally Achieved Turing’s Vision
Modern AI systems have fulfilled Turing’s vision of machines that learn and converse like humans, but challenges remain. A new paper highlights concerns about energy consumption and societal inequality while calling for more robust [...]
The Surprising Link Between Smell, Sound, and Emotions
New research reveals how smell and hearing interact in the brain to drive social behavior, using mouse maternal instincts as a model. Imagine you’re at a dinner party, but you can’t smell the food [...]
Brain cells age at different rates
As our body ages, not only joints, bones and muscles wear out, but also our nervous system. Nerve cells die, are no longer fully replaced, and the brain shrinks. "Aging is the most important risk factor [...]