Swansea University researchers have discovered what liquid gold looks like on the nanoscale – and in doing so have mapped the way in which nanoparticles melt, which is relevant to the manufacturing and performance of nanotechnology devices such as bio-sensors, nanochips , gas sensors, and catalysts.
The research published in Nature Communications (“Atomic-resolution imaging of surface and core melting in individual size-selected Au nanoclusters on carbon”) set out to answer a simple question – how do nanoparticles melt? Although this question has been a focus of researchers for the past century, it still is an open problem – initial theoretical models describing melting date from around 100 years, and even the most relevant models being some 50 years old.

Professor Richard Palmer, who led the team based at the University’s College of Engineering said of the research: “Although melting behavior was known to change on the nanoscale, the way in which nanoparticles melt was an open question. Given that the theoretical models are now rather old, there was a clear case for us to carry out our new imaging experiments to see if we could test and improve these theoretical models.”

Image Credit:  Swansea University

Read more at nanowerk.com

News This Week

Illuminating the world of nanoparticles

Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food [...]

Self-driving microrobots

Most synthetic materials, including those in battery electrodes, polymer membranes, and catalysts, degrade over time because they don't have internal repair mechanisms. If you could distribute autonomous microrobots within these materials, then you could [...]

Chemistry in the turbulent interstellar medium

Over 200 molecules have been discovered in space, some (like Buckminsterfullerene) very complex with carbon atoms. Besides being intrinsically interesting, these molecules radiate away heat, helping giant clouds of interstellar material cool and contract [...]