Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks are cilia, antenna-like structures protruding from most vertebrate cells. Whenever cilia fail to assemble correctly, their malfunctions can cause numerous human diseases.
The assembly and maintenance of cilia requires a bidirectional transport machinery known as Intraflagellar Transport (IFT), which moves in train-like structures along the microtubular skeleton of the cilium. Not only the structure of IFT trains was, so far, unknown, but also how the two types of oppositely directed molecular motors, kinesin and dynein, are prevented from interfering with each other, resulting in a smooth and constant motion of IFT trains.
The research group around Gaia Pigino at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden solved those two unanswered questions using cryo-electron microscopy and published their findings in the journal Nature Cell Biology (“The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia”).
Read more at nanowerk.com

Image Credit:    NewsJordan et al. Nature Cell Biology / MPI-CBG / Illustration: Bara Krautz

News This Week

Innovations in Nanocomposites: A Future Outlook

Nanocomposites are a class of nanomaterials, where one or more nanostructured materials (organic/inorganic) are incorporated in metal, polymer, or ceramic to obtain a new material with many unique properties. Nanocomposites are applied in various [...]

New sensor detects ever smaller nanoparticles

Conventional microscopes produce enlarged images of small structures or objects with the help of light. Nanoparticles, however, are so small that they hardly absorb or scatter light and, hence, remain invisible. Optical resonators increase [...]

How Will the COVID Pills Change the Pandemic?

From a new article By Dhruv Khullar in the New York Times: New antiviral drugs are startlingly effective against the coronavirus—if they’re taken in time. n March, 2020, researchers at Emory University published a paper about a [...]

3D printing approaches atomic dimensions

 A new 3D printing technology makes the production of complex metallic objects at the nanoscale possible. A team of chemists led by a scientist from the University of Oldenburg has developed an electrochemical technique [...]