Nonstop tranport of cargo in nanomachines

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks are cilia, antenna-like structures protruding from most vertebrate cells. Whenever cilia fail to assemble correctly, their malfunctions can cause numerous human diseases.
The assembly and maintenance of cilia requires a bidirectional transport machinery known as Intraflagellar Transport (IFT), which moves in train-like structures along the microtubular skeleton of the cilium. Not only the structure of IFT trains was, so far, unknown, but also how the two types of oppositely directed molecular motors, kinesin and dynein, are prevented from interfering with each other, resulting in a smooth and constant motion of IFT trains.
The research group around Gaia Pigino at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden solved those two unanswered questions using cryo-electron microscopy and published their findings in the journal Nature Cell Biology (“The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia”).
Read more at nanowerk.com

Image Credit:    NewsJordan et al. Nature Cell Biology / MPI-CBG / Illustration: Bara Krautz

News This Week

An AI strategy is no longer optional

At the New York Times DealBook conference, Intel emphasized it was urgent that every company put an artificial intelligence (AI) strategy in place. The reason, in a word, is data. The data deluge continues [...]

Artificial synapses made from nanowires

Scientists from Jülich together with colleagues from Aachen and Turin have produced a memristive element made from nanowires that functions in much the same way as a biological nerve cell. The component is able [...]

Updated – NanoApps Medical Inc. Near-Term Projects

NanoApps Medical is investigating the possibility that superparamagnetic nanoparticles (SPIONs) (Figure 1) and other classes of nanoparticles (e.g., gold coated nanoshells) (Figure 2) might have the capacity to target cancerous tumors, metastasizing cancer cells, [...]

Nonstop tranport of cargo in nanomachines

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks are cilia, antenna-like structures protruding from most vertebrate cells. Whenever cilia [...]

2018-11-27T13:46:30+00:00

Leave A Comment