Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks are cilia, antenna-like structures protruding from most vertebrate cells. Whenever cilia fail to assemble correctly, their malfunctions can cause numerous human diseases.
The assembly and maintenance of cilia requires a bidirectional transport machinery known as Intraflagellar Transport (IFT), which moves in train-like structures along the microtubular skeleton of the cilium. Not only the structure of IFT trains was, so far, unknown, but also how the two types of oppositely directed molecular motors, kinesin and dynein, are prevented from interfering with each other, resulting in a smooth and constant motion of IFT trains.
The research group around Gaia Pigino at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden solved those two unanswered questions using cryo-electron microscopy and published their findings in the journal Nature Cell Biology (“The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia”).
Read more at nanowerk.com

Image Credit:    NewsJordan et al. Nature Cell Biology / MPI-CBG / Illustration: Bara Krautz

News This Week

Visualizing the Healthtech Revolution

Imagine being a patient in the early 19th century, when all ailments were considered “humors” to be ejected from the body. To restore balance, various techniques such as diets, natural herbs, or bloodletting with [...]

Nano-bot can probe inside human cells

University of Toronto Engineering researchers have built a set of magnetic 'tweezers' that can position a nano-scale bead inside a human cell in three dimensions with unprecedented precision. The nano-bot has already been used [...]